
Classification and Regression Trees

Clay Ford

Spring 2016



In this workshop

I What are and how to read classification and regression trees
I How to create classification and regression trees in R
I Overview of how trees are constructed
I How to interpret output from building trees
I How to improve prediction accuracy of trees
I Trees versus linear models / Strengths and Weaknesses



What are Classification and Regression Trees?

They are basically decision trees that make predictions based on
binary splits.

Classification trees predict a classification (categorical response).

Regression trees predict means or medians (continuous response).

They are non-parametric in nature in that they don’t make
distributional assumptions about the response or prediction errors.



Example of Classification Tree

Using laser scanner data to predict whether a patient’s eye suffers
from glaucoma or not.



Example of Regression Tree

Explaining profit of a company based on assets, sales and market
value.



How to read the trees

Start at the top of the tree, called the root node:
I go left if condition is true
I otherwise go right

Repeat process at subsequent nodes until reaching a terminal node,
or leaf. The value in the leaf is the predicted value.

Hence classification and regression trees tend to be easier to
interpret than traditional linear modeling output.

However, that does not mean they always perform better than linear
models.



Using R to build trees

There are several packages available for building decision trees in R.
The package we’ll use in this workshop is rpart, which is short for
“Recursive Partitioning”.

The main function is rpart. The basic steps to fitting and plotting
a tree are:

1. fit <- rpart(response ~ x1 + x2 + x3..., data=DF)
where DF is your data frame and x1, x2, . . . are your
predictors.

2. plot(fit)
3. text(fit)

If response is a factor, then a classification tree is built. Otherwise
a regression tree is built.



Plotting tree branches

Calling plot on an rpart object produces the tree without labels.
Additional arguments of note include

I uniform: is vertical spacing between nodes uniform? The
default is FALSE.

I branch: number between 0 and 1 that controls the shape of
branches. 1 draws square-shouldered branches, 0 draws
V-shaped branches, and values in between draw a combination.
Default is 1.

I compress: should routine attempt a more compact
arrangement of tree? Default is FALSE.

I margin: extra fraction of white space to leave around the
borders of the tree. Default is 0.



Adding text to tree branches

Calling text on an rpart object adds text labels to tree branches.
Additional arguments of note include

I use.n: show number of observations in leaves? Default is
FALSE.

I all: label all nodes with additional information? Default is
FALSE.

I cex: character expansion, expressed as a fraction of 1 (normal
size). Greater than 1, bigger text; less than 1, smaller text.

Let’s go to R!



How trees are constructed

The basic process:

1. Examine all possible splits for all possible covariates and choose
the split which leads to 2 groups that are “purer” than the
current group. That is, take the split that produces the largest
improvement in purity.

2. Repeat step 1 for the 2 new groups. Hence the name recursive
partitioning.

3. Repeat steps 1 and 2 for all subsequent groups until some
stopping criterion is fulfilled.

In the rpart package, a node must have at least 20 observations
for it to attempt a split. This is a setting that can be modified.



A 2-dimensional example of classification tree
Predict black or red classification based on X1 and X2 values. The
prediction is based on majority in terminal node.

|X2>=8.386

black
16/7

red  
3/14

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

7
8

9
10

11

X1

X
2



A 2-dimensional example of classification tree
Predict black or red classification based on X1 and X2 values. The
prediction is based on majority in terminal node.

|X2>=8.386

X2< 10.41

black
13/3

red  
3/4

red  
3/14

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

7
8

9
10

11

X1

X
2



A 2-dimensional example of classification tree
Predict black or red classification based on X1 and X2 values. The
prediction is based on majority in terminal node.

|X2>=8.386

X2< 10.41

X1< 9.994

X1>=10.05

X2< 7.296

black
6/0

black
6/1

red  
1/2

red  
3/4

black
2/1

red  
1/13

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

7
8

9
10

11

X1

X
2



Measures of impurity - Classification Trees

For classification trees, the usual measure of impurity is the Gini
index:

G =
K∑

k=1
p̂mk(1− p̂mk)

where K is the number of classes and p̂mk is the proportion of
observations in region m that are from class k.

This is basically a measure of misclassification.



Why use the Gini index?
Simply put, it’s more sensitive than misclassification rate:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Gini vs. Misclassification
for two−class response

Proportion belonging to class 1

im
pu

rit
y

Gini Index
Misclassification Error



Gini index vs misclassification rate example

Let’s say we have a two-class response with 400 observations in
each class (400, 400).
Suppose when growing a tree we have two splits to consider:

1. nodes with (300, 100) and (100, 300)
2. nodes with (200, 400) and (200, 0)

Both splits produce a misclassification rate of 200/800 = 0.25.

But the second split produces a pure node and is probably
preferable. The Gini index captures this:
(300/400)× (100/400) + (300/400)× (100/400) = 0.375
(200/600)× (400/600) + (200/200)× (0/200) = 0.222

The second split has nodes with lower impurity.



Measuring improvement in purity - Classification Trees

A tree split in rpart is selected based on the greatest improvement
in purity.

The improvement in purity is calculated as follows:

∆I = n[p(A)I(A)− p(AL)I(AL)− p(AR)I(AR)]

where. . .
I p(A) is the proportion of observations in the current node
I p(AL) and p(AR) are the proportion of observations sent to the

left and right child nodes, respectively
I I(A), I(AL) and I(AR) are the measures of impurity in each

node (ie, the Gini Index)
I n is the total number of observations.



Measuring improvement in purity - example cont’d

Let’s say we have a two-class response with 400 observations in
each class (400, 400).

Suppose when growing a tree from the root node we have two splits
to consider:

1. nodes with (300, 100) and (100, 300)
2. nodes with (200, 400) and (200, 0)

The second has the largest improvement in purity:

800[(1)(0.5)(0.5)− (0.5)(300/400)(100/400)−
(0.5)(300/400)(100/400)] = 50

800[(1)(0.5)(0.5)− (0.75)(200/600)(400/600)−
(0.25)(200/200)(0/200)] = 66.66667



Measures of impurity - Regression Trees

For regression trees, the usual measure of purity is the Residual Sum
of Squares (RSS). We select a split such that the RSS is minimized:

RSS =
J∑

j=1

∑
i∈Rj

(yi − ŷRj )2

where J is the number of regions, Rj are the regions of predictors,
and ŷRj is the mean response for the Jth region.



Measuring improvement in purity - Regression Trees

The improvement in purity as displayed in rpart is calculated as
follows:

∆I = 1− (SSright + SSleft)/SSparent

where SS is the respective sum of squares for the parent and
children nodes:

∑
(yi − ȳ)2.



The summary of tree construction

I A summary of the tree construction process can be viewed with
the summary function. Beware, it produces a lot of output!

I It displays the primary split for each node as well as up to four
“runner-up” splits (the splits that came closest to the chosen
split in terms of improving purity).

I It also displays five surrogate splits. These are splits for
observations that are missing data for the primary split.

I Any observation missing the primary split variable is classified
using the first surrogate split, or if missing that, the second
surrogate, and so on.

Let’s go to R.



Pruning trees

Once we grow a tree, we usually need to prune it. That is, we need
to trim off the bottom branches.

A tree that is too large can overfit the data and not perform well for
data not used in growing the tree.

On the other hand, a tree that is too small will not include
important predictors and also not perform well.

Therefore pruning a tree can pose a challenge.



A Large Tree - overfits data



A Small Tree - underfits data



How pruning works

We build a large tree, T , and then recursively snip off the least
important splits.

Importance is captured by the cost-complexity measure:

Rα(T ′) = R(T ′) + α|T ′|

where α is the complexity parameter ranging from 0 to ∞, R(T ′) is
the risk of the subtree T ′, and |T ′| is the number of terminal nodes
(leaves) in the subtree. Thus Rα(T ′) is the risk of a subtree for a
given α.

For any specified α, cost-complexity pruning determines the subtree
T ′ that minimizes Rα(T ′) over all subtrees of T , the original large
tree.



The complexity parameter, α

α measures the cost of adding another variable to the tree. In other
words, there’s a penalty to pay for adding more branches to a tree.
α is the price you pay to add more branches.

Rα(T ′) = R(T ′) + α|T ′|

If α is small, the penalty is small and the tree will be large. The
minimal value is achieved by having more terminal nodes (leaves).

If α is large, the penalty is large and the tree will be small. The
minimal value is achieved by having fewer terminal nodes (leaves).



Selecting the optimal α

rpart use K-fold cross validation to find the optimal α. That is, it
divides our data into K folds (or sets), and then for each K:

1. Hold out set K and grow a large tree with the other folds
2. Obtain a sequence of best subtrees as a function of α
3. Evaluate the error for the left out set K (misclassification rate

for classification trees; mean squared prediction error for
regression trees)

4. Average the error results for each α

rpart does this with a default of K = 10. When finished we select
α with the lowest error rate and use that to prune the tree.



Pruning results in rpart

The cross-validation results can be viewed with the printcp
function. It prints 5 columns of numbers:

I CP: the complexity parameter α scaled by the number of
misclassifications in a model with no splits.

I nsplit: number of splits in tree
I rel error: relative error (on data used to build tree)
I xerror: cross-validated error rate (on held out data)
I xstd: cross-validated standard error



printcp example



plotcp example

Use the plotcp function to plot xerror vs. CP. Example:
plotcp(gfit)



Selecting a CP and pruning a tree

Recommendation: Pick the CP within one standard error of the
minimum.

To prune a tree, use the prune function on the rpart object with a
cp argument specifying the complexity parameter.

For example, to prune a tree using complexity parameter of 0.031:

gfit.prune <- prune(gfit, cp=0.031)

Let’s go to R.



Making predictions

Use the predict function to run data through your tree and make
predictions.

For classification trees there are three types of predictions you can
make:

I predict(tree, type="prob"): predicted probabilities
(default)

I predict(tree, type="class"): predicted class using level
label

I predict(tree, type="vector"): predicted class using level
number

For regression trees, calling predict(tree) returns predicted
means.



Making predictions with data not used to build tree

To make predictions for data not used to build tree, use the
newdata= argument.

The new data must be a data frame and include all variables used in
building the tree even if the tree only includes a subset of the
variables.



Training and test data

If our tree is intended for prediction purposes, it’s a good idea to
build the tree using only some of the data (say half), and evaluate
its predictive performance using the held out data (the other half).

Training data - data used to build the tree
Test data - data used to evaluate the performance of the tree

The training and test data must be selected randomly.

Let’s go to R.



Improving prediction accuracy of trees

Classification and Regression trees tend to suffer from high variance.
That is they tend to produce different sized trees using different
samples from the same population.

As we’ll demonstrate in the R script, pruning with cross validation
does not always result in pruning the same size tree.

Two approaches to reducing this variability are bagging and random
forests.



Bagging

“Boostrap aggregation”, or Bagging, means resampling our data B
times, building B trees, and then averaging all the predictions.

“Resampling” means sampling with replacement from our original
data until we have a data set the same size as our original data.

Two keys:

1. We do not prune our trees. We grow them deep and use them
to make predictions.

2. We make predictions using observations that were not used to
grow the tree. These are called out-of-bag (OOB) predictions.

For regression trees, the average is simply the mean of the B
predicted means. For classification trees, the prediction is the most
commonly occurring prediction (ie, majority vote)



Random Forests

Random forests are similar to bagging, except we only consider a
random sample of m predictors at each split.

A fresh sample of predictors is taken at each split.

We usually use m ≈ √p, that is the number of predictors at each
step is about equal to the square root of the total number of
predictors. When m = p, we have bagging.

Sampling predictors at each split prevents strong predictors from
dominating the tops of trees and gives moderately-strong predictors
a chance to perform. Think of this as allowing some of the
“runner-ups” in the summary results to have a turn as a primary split.



Implementation of bagging and random forests

The randomForest package allows you to easily implement bagging
and random forests. The syntax is very similar to rpart.

Bagging:
bag.tree <- randomForest(response ~ ., data=DF,
mtry=p)

Random forest:
rf.tree <- randomForest(response ~ ., data=DF)

The mtry= argument specifies how many predictors to sample at
each split. Recall m = p is bagging. The default for classification is√p while the default for regression is p/3.



The drawback of bagging and random forests

While these two approaches reduce variability and improve
performance, they sacrifice the ease of interpretability.

Instead of one tree we can easily interpret, we now have many trees
(usually 500) that we are using as an ensemble.

One way around this is to create a plot of variable importance.

This plot shows the most important predictors based on the total
decrease in node impurity that results from splits over the variable.



Example of variable importance plot

Let’s go to R.



Trees versus linear models

When it comes to classification problems, if the true decision
boundary is linear, then a linear model will likely outperform a
tree-based model.

On the other hand, if true decision boundary is non-linear, then a
tree-model may outperform a linear model.

Another consideration is interpretability. A decision tree is easier to
read and understand than linear model output. Thus we may be
willing to sacrifice small gains in performance for an easier to
understand model.



Linear decision boundary - 2D classification
A linear model will likely outperform a tree model in this situation.

2 4 6 8 10

2
4

6
8

10

x1

x2



Non-linear decision boundary - 2D classification
A tree model will likely outperform a linear model in this situation.

2 4 6 8 10

2
4

6
8

10

x1

x2



Strengths of trees

I Handles missing values without omitting complete observations
I Can capture non-additive behavior; automatically includes

interactions
I Handles both regression and classification
I Results are easy to understand



Weaknesses of trees

I Tree may not be optimal
I Larger trees can make poor intuitive sense
I Continuous predictor variables are dichotomized
I May obscure relationships that are obvious from linear

modeling output



References

Everitt, B. and Hothorn, T. (2006) A Handbook of Statistical
Analyses using R. Chapman & Hall/CRC, Boca Raton. (Ch. 8)

Hastie, T. et al. (2009) The Elements of Statistical Learning.
Springer, New York. (pages 308 - 310)

James, G. et al. (2013) An Introduction to Statistical Learning.
Springer, New York. (Ch. 8)

Maindonald, J. and Braun, W. J. (2010) Data Analysis and
Graphics Using R. Cambridge, UK. (Ch. 11)

Therneau, T. and Atkinson, E. (2014) An Introduction to Recursive
Partitioning Using the RPART Routines. Included with rpart
package.



StatLab

Thanks for coming today!

For help and advice with your data analysis, contact the StatLab to
set up an appointment: statlab@virginia.edu

Sign up for more workshops or see past workshops:
http://data.library.virginia.edu/training/

Register for the Research Data Services newsletter to stay
up-to-date on RDS events and resources:
http://data.library.virginia.edu/newsletters/

mailto:statlab@virginia.edu
http://data.library.virginia.edu/training/
http://data.library.virginia.edu/newsletters/

