
Character Manipulation in R

Clay Ford

Spring 2017



Workshop agenda

I How to recognize character data in R
I Character data vs Factor data
I Base R functions for working with character data
I Intro to Regular Expressions
I Intro to stringr, qdapRegex and lubridate packages
I Work through three extended examples



Examples of character manipulation

I Getting rid of whitespace (" Texas ")
I Converting text to UPPERCASE or lowercase
I Extract parts of a string (Eg, get extract “23” from
“<b>23</b>”)

I Split “First Last” into “First” and “Last”
I Combine “First” and “Last” into “First Last”
I Identify patterns of text for purpose of extracting or subsetting

data



Character data in R

I Character data have quotes when printed to console
I But data with quotes does not mean it’s character!
I use is.character() to find out.
I Character data need to be surrounded with quotes (either

single or double) when used in R code

(x <- c("a","b","c","12"))

## [1] "a" "b" "c" "12"

is.character(x)

## [1] TRUE



Beyond letters and numbers

Character data includes apostrophes, quotes, other punctuation, line
breaks, carriage returns, spaces, and tabs. These can look different
depending on the system we use and whether we’re printing them to
the console or entering them in an R script.

name <- '"Tiny Rick" Sanchez
Morty Smith
D\'wayne'
name

## [1] "\"Tiny Rick\" Sanchez\nMorty Smith\nD'wayne"



Beyond letters and numbers

Some guidelines:

I Use single quotes around text that include double quotes (and
vice versa)

I Or “escape” quotes with a backslash if being entered within
quotes of the same type

I You can enter line breaks, but they appear as “\n” when
printed to console

I see ?Quotes for much more information



Viewing character with cat

We can use the cat function to view character data in a “normal”
way where things like line breaks are not printed.

cat(name)

## "Tiny Rick" Sanchez
## Morty Smith
## D'wayne

We can also do writeClipboard(name) to copy the text to the
clipboard and paste into a text document to review.



Character versus factor

I Sometimes data that appear to be character are actually stored
as a factor

I factors are character data that are stored as integers but have
character labels

I factors are good for using character data in statistical modeling
(eg, ANOVA, regression, etc)

I If your character data is stored as a factor, R automatically
handles conversion to dummy matrices necessary for statistical
modeling routines

I factors do not have quotes when printed to console



Factor data in R

(y <- factor(c("a","b","c","c")))

## [1] a b c c
## Levels: a b c

is.character(y)

## [1] FALSE



Why should you care about factors?
I Base R functions such as read.csv and data.frame will

automatically convert character data to factor
I Set argument stringsAsFactors = FALSE to turn off
I Many R functions intended for character data will work on

factors by quietly coercing the data to character! Example:

y

## [1] a b c c
## Levels: a b c

# find "a", substitute "z"
(y <- sub("a","z",y))

## [1] "z" "b" "c" "c"



Final word on factors (in this workshop)

I Be aware of the structure of your data. Use str for this.
I If you plan to clean or manipulate character data, make sure

it’s character, not factor.
I Change factor to character with as.character function

(y <- factor(c("a","b","c","c")))

## [1] a b c c
## Levels: a b c

(y <- as.character(y))

## [1] "a" "b" "c" "c"



Basic character manipulation functions

These are functions available “out-of-the-box” with base R.

I toupper, tolower: convert all characters in a vector to
UPPERCASE or lowercase

I trimws: trim whitespace around character data
I substr: extract a substring of character data based on position
I paste, paste0: combine two or more vectors of character data
I sub, gsub: search-and-replace text
I strsplit: split a string into parts
I nchar: count number of characters in a string



Examples - toupper and tolower

state <- c("Virgina", "Maryland", "Delaware")
tolower(state)

## [1] "virgina" "maryland" "delaware"

toupper(state)

## [1] "VIRGINA" "MARYLAND" "DELAWARE"



Examples - trimws

# \n is a newline
(response <- c(" Yes ", " No ", " No way \n"))

## [1] " Yes " " No " " No way \n"

trimws(response)

## [1] "Yes" "No" "No way"



Examples - substr

Extract a substring based on starting and stopping position.

id <- c("VA0001", "VA0002", "VA0003")
substr(id, start = 3, stop = 6)

## [1] "0001" "0002" "0003"

Can also identify starting and stopping position of the substring to
replace.

substr(id, start = 1, stop = 2) <- "ID"
id

## [1] "ID0001" "ID0002" "ID0003"



Examples - paste

paste concatenates items in vectors.

first <- c("Geddy","Alex","Neil")
last <- c("Lee","Lifeson","Peart")
paste(first, last)

## [1] "Geddy Lee" "Alex Lifeson" "Neil Peart"

It uses a space as a separator by default. We can specify a separator
with the sep argument.

paste(last, first, sep = ", ")

## [1] "Lee, Geddy" "Lifeson, Alex" "Peart, Neil"



Examples - paste and paste0
Use the collapse argument to collapse multiple elements into one
element.

(time <- c("10", "12", "58"))

## [1] "10" "12" "58"

paste(time, collapse = ":")

## [1] "10:12:58"

paste0 is a convenience function for pasting without a separator.

st <- c("VA","TX","CA"); id <- 1:3
paste0(st, id)

## [1] "VA1" "TX2" "CA3"



Examples - sub and gsub

Find a string and substitute another string. sub only does the first
match while gsub (global) does all matches.

trt <- c("trt_1_a", "trt_1_b", "trt_2_a")
sub(pattern = "_", replacement = "", trt)

## [1] "trt1_a" "trt1_b" "trt2_a"

gsub("_", "", trt)

## [1] "trt1a" "trt1b" "trt2a"

Note: sub and gsub assume the pattern is a regular expression.
More on that later.



Examples - strsplit

Split a character string at a character of your choice.

talk <- c("Hello.\nHi.\nHow are you?\nOK.",
"We should go.\nGood idea.")

strsplit(talk, split = "\n")

## [[1]]
## [1] "Hello." "Hi." "How are you?" "OK."
##
## [[2]]
## [1] "We should go." "Good idea."

Notice it returns a list object. This can make strsplit results
challenging to work with.



Examples - strsplit with unlist

The unlist function “unwraps” a list into a single vector. This can
come in handy.

unlist(strsplit(talk, split = "\n"))

## [1] "Hello." "Hi." "How are you?" "OK."
## [5] "We should go." "Good idea."



Examples - nchar

Count the number of characters in a string. Count includes spaces
and punctuation. Notice NA is not counted.

k <- c("W. Main St", "Water St.", NA, "5th St SW")
nchar(k)

## [1] 10 9 NA 9

This can be useful for error checking or subsetting data. For
example, check that all state abbreviations are length 2.

all(nchar(state) == 2)



Working with character patterns

Sometimes we need to identify or extract character data that
matches a certain pattern. Examples:

I email addresses
I two-character sequences of capital letters (AL, AK, etc)
I ALLCAP words ending in a : (CLINTON:, SANDERS:, etc.)
I text in between HTML tags or in parentheses
I word variations (cry, crying, cried, cries)

We use regular expressions to define these patterns.



Regular Expressions

I Regular expressions are a language for describing text patterns
I A regular expression is usually formed with some combination

of literal characters, character classes and modifiers
I literal character example: state (looking for "state")
I character class example: [0-9] (any number 0 - 9)
I modifier example: + (1 or more of whatever it follows)

I Regular expression example: state[0-9]+ finds patterns such
as state1, state12, state99 but not state



More on Regular Expressions

I Regular expressions are powerful and can be quite complex
I Many programming languages have their own implementation

of regular expressions
I We will cover just the basics today as they work in R



Character classes

I [0-9], [a-z], [A-Z]
I Define your own: [0-3a-g], [AEIOUaeiou]
I Predefined character classes

I [:alpha:] all letters
I [:digit:] numbers 0 - 9
I [:alnum:] Alphanumeric characters (alpha and digit)
I [:blank:] Blank characters: space and tab
I [:lower:] lowercase letters
I [:upper:] UPPERCASE letters
I [:punct:] Punctuation characters
I [:print:] Printable characters: [:alnum:], [:punct:] and space
I [:space:] Space characters: tab, newline, vertical tab, form

feed, carriage return, space



Modifiers

I ˆ start of string
I $ end of string
I . any character except new line
I * 0 or more
I + 1 or more
I ? 0 or 1
I | or (alternative patterns)
I {} quantifier brackets: exactly {n}; at least {n,}; between

{n,m}
I () group patterns together
I \ escape character (needs to be escaped itself in R! \\)
I [] character class brackets

Note: precede these with a double backslash if you want to treat
them as literal characters.



Shorthand character classes

I \d is for “digit”; short for [0-9]
I \w is for “word character”; short for [A-Za-z0-9_]
I \s is for “whitespace character”; short for [\t\r\n\f]

Negated versions:

I \D is short for [ˆ\d]
I \W is short for [ˆ\w]
I \S is short for [ˆ\s]

Recall: The backslash in R has to be escaped itself. Hence all these
need \\



Word boundaries

The metacharacter \b matches word boundaries. It allows us to
search for whole words or numbers.

The regex "red" matches "red", "redder", and "Fred".

The regex "\\bred" matches "red" and "redder" but not
"Fred".

The regex "\\bred\\b" matches "red" but not "redder" or
"Fred".



Lookahead and Lookbehind

When we want to match words or patterns that come (or don’t
come) before or after certain words, we can use lookahead and
lookbehind. For example, match “done” if it does not follow
“almost”.

I Lookahead (?=foo) What follows is foo
I Lookbehind (?<=foo) What precedes is foo
I Negative Lookahead (?!foo) What follows is not foo
I Negative Lookbehind (?<!foo) What precedes is not foo

Note: We can also match regular expressions in lookahead but not
lookbehind.



Learning more about regex

I There is MUCH more to regular expressions!
I Google is your friend when learning regex or creating a regular

expression
I See http://www.regular-expressions.info/ for a free

and well-done tutorial
I See https://regex101.com/ where you can build and test

regexes

Let’s look at a few examples and introduce some new functions.

http://www.regular-expressions.info/
https://regex101.com/


grep and grepl

grep and grepl search for patterns in strings. grep returns indices
of matches while grepl returns a logical vector. Example: find
strings containing ".x"

text <- c("1", "1.x", "2", "2.x", "3.1")
grep(pattern = "\\.x", x = text)

## [1] 2 4

grepl(pattern = "\\.x", x = text)

## [1] FALSE TRUE FALSE TRUE FALSE

Notice we have to “escape” the period with two backslashes: \\.



grep and grepl assume regex patterns

By default grep and grepl (and sub and gsub) assume the
pattern you give it is a regular expression. Set fixed = TRUE to
make them interpret the pattern literally.

text <- c("1", "1.x", "2", "2.x", "3.1")
grep(pattern = ".x", x = text, fixed = TRUE)

## [1] 2 4

grepl(pattern = ".x", x = text, fixed = TRUE)

## [1] FALSE TRUE FALSE TRUE FALSE



More on grep

Setting value=TRUE will return the string containing the matching
pattern.

grep(pattern = "\\.x", x = text, value = TRUE)

## [1] "1.x" "2.x"

Setting invert=TRUE and value=TRUE will return the string not
containing the pattern.

grep(pattern = "\\.x", x = text, value = TRUE,
invert = TRUE)

## [1] "1" "2" "3.1"



regex with sub and gsub
We can also use regular expressions with sub and gsub. Below we
find the period and any letter or number following it, and replace
with nothing.

id <- c("1.x","1.2","1.01","2.1","2.x")
sub(pattern = "\\.[[:alnum:]]+", "", id)

## [1] "1" "1" "1" "2" "2"

Here we get rid of all punctuation.

text <- "No? You sure?! OK. Good luck!"
gsub(pattern = "[[:punct:]]", "", text)

## [1] "No You sure OK Good luck"



A few more regex examples
Find file names ending in ".csv"

files <- c("pre.csv.R","arrests.csv","lcsv2.jpg")
grep(pattern = "\\.csv$", files, value = TRUE)

## [1] "arrests.csv"

Find all instances of “cry” such as “crying”, “cried”, “cries”

resp <- c("crying", "he cried", "encrypted",
"I wanted to cry", "increase")

grep(pattern = "\\bcr(y|ying|ied|ies)\\b", resp)

## [1] 1 2 4



A few more regex examples
If what follows is " x" (lookahead), replace with “---”

x <- c("129 x", "128", "130 x", "x 131")
sub(pattern = "[0-9]{3}(?= x)", "---",x , perl = TRUE)

## [1] "--- x" "128" "--- x" "x 131"

If what precedes is "x " (lookbehind), replace with “999”

sub(pattern = "(?<=x )[0-9]{3}", "999", x , perl = TRUE)

## [1] "129 x" "128" "130 x" "x 999"

Notice we had to set perl=TRUE to use Perl-compatible regular
expressions!



R packages for character manipulation

Some character manipulation tasks are so common that others have
developed R packages that provide functions to easily carry out the
tasks.

Three such packages:

I stringr - Simple, Consistent Wrappers for Common String
Operations

I qdapRegex - Regular Expression Removal, Extraction, and
Replacement Tools

I lubridate - Make Dealing with Dates a Little Easier



The stringr package

I “a clean, modern interface to common string operations”
I Comes with a thorough but easy-to-follow vignette
I The main stringr functions all begin with str_
I stringr functions are actually wrappers for functions from the

stringi package!



stringr function: str_extract and str_extract_all

str_extract and str_extract_all extract matching patterns
from a string. The former extracts the first match while the latter
extracts all matches. Example: extract year.

library(stringr)
date <- c("4-5-1973", "6 Sept 1987", "Dec 12, 2012")
str_extract(date, pattern = "[0-9]{4}$")

## [1] "1973" "1987" "2012"



str_extract vs. grep

You might think using grep with value = TRUE would be the
same as str_extract. It’s not.

date <- c("4-5-1973", "6 Sept 1987", "Dec 12, 2012")
grep(pattern = "[0-9]{4}$", date, value = TRUE)

## [1] "4-5-1973" "6 Sept 1987" "Dec 12, 2012"

str_extract extracts the match; grep with value=TRUE returns
the string that contains the match.



stringr function: str_pad

str_pad pads a string with the character you specify. Example:
pad id with leading 0s so all ids have three digits.

id <- c("8","19","101","144")
str_pad(id, width = 3, side = "left", pad = "0")

## [1] "008" "019" "101" "144"



stringr function: str_sub

str_sub extracts and replaces substrings from a character vector.
It’s equivalent to substr but also accepts negative positions, which
are calculated from the left of the last character. Example: extract
the last 4 characters of a string.

date <- c("4-5-1973", "6 Sept 1987", "October 12, 2013")
str_sub(date, start = -4)

## [1] "1973" "1987" "2013"

There are several other functions in the stringr package. Check
out the vignette!



The qdapRegex package

I A collection of regular expression tools associated with the
qdap package

I Works fine as a standalone package
I Functions for the removal/extraction/replacement of

abbreviations, dates, dollar amounts, email addresses, hash
tags, numbers, percentages, citations, person tags, phone
numbers, times, and zip codes

I It has no vignette but the documentation has many good
examples



qdapRegex function: ex_between

ex_between extracts strings between two markers. It returns a list,
so we often use it in conjunction with unlist

library(qdapRegex)
rev <- c("(100)", "(215)", "(-400)")
unlist(ex_between(rev, left = "(", right = ")"))

## [1] "100" "215" "-400"



qdapRegex function: ex_mail

ex_email extracts email addresses.

text <- c("mailto:jcf2d@virginia.edu",
"Doe, Jon (jd3z) jd3z@virginia.edu")

unlist(ex_email(text))

## [1] "jcf2d@virginia.edu" "jd3z@virginia.edu"

qdapRegex has many functions like this.



Working with dates
I Dates and times are often read in as character data. We

usually want them formatted as a Date class so we can
calculate things like elapsed time.

I The lubridate package makes it easy to convert character
dates to Date class

I Use any permutation of m, d, y as a function to indicate order
of month, day and year.

library(lubridate)
Dates <- c("12-12-2001","1/7/2004","Oct 7, 2008")
(Dates <- mdy(Dates))

## [1] "2001-12-12" "2004-01-07" "2008-10-07"

I The dates are now stored as number of days since Jan 1, 1970.



More on lubridate

I You can also read in hours, minutes and seconds using h, m and
s either by themselves or with mdy (following an underscore) .

Times <- c("2017-02-06 02:23:12", "2017-02-07 09:54:18")
(Times <- ymd_hms(Times))

## [1] "2017-02-06 02:23:12 UTC" "2017-02-07 09:54:18 UTC"

is.character(Times)

## [1] FALSE

I These dates are stored as number of seconds since Jan 1, 1970.
I See the lubridate vignette for a great intro to the package.



Let’s go to R!

For the remainder of the workshop we’ll work in RStudio,
demonstrating what we covered in the slides. We’ll also introduce
more functions and strategies for manipulating character data.



References and further reading

I Sanchez, G. (2013). Handling and Processing Strings in R.
Trowchez Editions. http://gastonsanchez.com/Handling_
and_Processing_Strings_in_R.pdf

I Spector, P. (2008). Data Manipulation in R. Springer.
I Teetor, P. (2011). R Cookbook. O’Reilly.
I Li, G. and Bryan, J. (2014). Regular Expressions in R. http:

//stat545.com/block022_regular-expression.html
I Regular-Expressions.info:

http://www.regular-expressions.info/
I Regex101: https://regex101.com/
I Google “regex cheat sheet”

http://gastonsanchez.com/Handling_and_Processing_Strings_in_R.pdf
http://gastonsanchez.com/Handling_and_Processing_Strings_in_R.pdf
http://stat545.com/block022_regular-expression.html
http://stat545.com/block022_regular-expression.html
http://www.regular-expressions.info/
https://regex101.com/


Thanks for coming today!

For help and advice with your statistical analysis:
statlab@virginia.edu

Sign up for more workshops or see past workshops:
http://data.library.virginia.edu/training/

Register for the Research Data Services newsletter to stay
up-to-date on RDS events and resources:
http://data.library.virginia.edu/newsletters/

mailto:statlab@virginia.edu
http://data.library.virginia.edu/training/
http://data.library.virginia.edu/newsletters/

