
Data Wrangling in R: Programming and
Automation

Clay Ford

Fall 2018

Agenda

I Intro to writing functions in R
I Using functions to automate tasks

R is comprised of functions

I Just about everything in R is a function.
I Existing functions come in packages. For example:

I The read.csv function is in the utils package
I The lm function is in the stats package
I The + operator is a function in the base package
I The ggplot function is in the ggplot2 package

I R allows us to easily create our own functions during an R
session that are not part of a package.

What is a function?

I In math, a function assigns an output to a given input. For
example:

f (x) = 2x + 6

I An input of x = 2 results in an output of 10.

f (x = 2) = 2 · 2 + 6 = 10

I Functions in R are similar

Writing functions in R

I We can define the function on the previous slide as follows in R:

f <- function(x) 2*x + 6
f(x = 2)

[1] 10

I The function function allows you to define a function!

Some basic details on creating functions

I The function arguments are the inputs. We can name them
whatever we want (following R naming conventions).

I To create a reusable function, we have to assign it to a name.
We can name it whatever we want.

I Once created, the function is available to use for the remainder
of the R session.

I Same example as before using different argument and name

exFunction <- function(value) 2*value + 6
exFunction(value = 2)

[1] 10

Functions can have multiple arguments

I For example, the formula for BMI has two inputs:

BMI = weight(lb)
height(in)2 × 703

I A possible R function with two arguments:

bmi <- function(w,h) w/(h^2) * 703
bmi(w = 205, h = 69)

[1] 30.2699

Functions can have more than one line of code

I Place multiple lines between curcly braces: {}
I Example: check to make sure numbers are entered; if not,

return an error

bmi <- function(w,h){
if(!is.numeric(w) || !is.numeric(h))

stop("enter numbers")
w/(h^2) * 703}

bmi(w = 205, h = "5 ft 9 in")

Error in bmi(w = 205, h = "5 ft 9 in"): enter numbers

I Functions with more than one line of code return the last line.

Functions can return multiple outputs

I A function can return more than one thing. For example, return
original height and weight along with BMI in a data frame:

bmi <- function(w,h){
b <- w/(h^2) * 703
data.frame(weight = w, height = h, bmi = b)}

bmi(w = 205, h = 69)

weight height bmi
1 205 69 30.2699

R functions not limited to math formulas

I Here’s a function that returns a difference in means along with
a 95% CI on the difference

meanDiff <- function(var1, var2){
tt <- t.test(var1, var2)
ci <- tt$conf.int # get CI of diff in means
dif <- mean(var1) - mean(var2)
c("CI lower" = ci[1], "Difference" = dif,

"CI upper" = ci[2])}

meanDiff(var1 = x1, var2 = x2)

CI lower Difference CI upper
-2.467935 -1.944420 -1.420906

Debugging functions

I There are lots of debugging features in R/RStudio. We’ll talk
about just one: debug

I How it works:
1. Call debug on your function
2. Run your function with some input. This opens the debugging

window.
3. Click the Next button to step through each line of code. Any

objects created in the function will be available to inspect and
manipulate

4. When finished, either fix your code and reassign the function, or
call undebug on your function.

I We’ll give a demo in the R script

Motivating example for creating functions

I Let’s say I have 50 columns of numeric data in the data frame
dat and I want to make the following plot for each column

V1

mean = −0.09; median = −0.142; sd = 0.856
V1

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

The code for the plot

I The plot on the previous slide was created with this code.

x <- dat[["V1"]]
h <- hist(x, plot = FALSE)
info <- paste0("mean = ", round(mean(x),3),

"; median = ", round(median(x),3),
"; sd = ", round(sd(x),3))

plot(h, freq = FALSE,
ylim = c(0, 1.2*max(h$density)),
sub = info, main = "V1", xlab = "V1")

lines(density(x), col = "blue")

I I don’t want to copy-and-paste that code 50 times! Or submit
it 50 times, each time changing the variable!

The first step: create a function

histDensity <- function(v){
x <- dat[[v]]
h <- hist(x, plot = FALSE)
info <- paste0("mean = ", round(mean(x),3),

"; median = ", round(median(x),3),
"; sd = ", round(sd(x),3))

plot(h, freq = FALSE,
ylim = c(0, 1.2*max(h$density)),
sub = info, main = v, xlab = v)

lines(density(x), col = "blue")
}

I Notice that we basically took our existing code, inserted it
between function(v){ and }, replaced "V1" with v, and
assigned it the name histDensity

The function at work for V1

histDensity("V1")

V1

mean = −0.09; median = −0.142; sd = 0.856
V1

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

The function at work for V2

histDensity("V2")

V2

mean = 0.112; median = 0.025; sd = 0.942
V2

D
en

si
ty

−2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

But this leads to another problem

I Do we want to do this?

histDensity("V1")
histDensity("V2")
histDensity("V3")
histDensity("V4")
histDensity("V5")
etc. all the way to "V50"

I No.

Second step: apply the function to the variable names

I R provides facilities for applying functions to vectors of values.
I In this example we could create a vector of variables names

using the names function

vars <- names(dat)
head(vars)

[1] "V1" "V2" "V3" "V4" "V5" "V6"

I Then we could apply the function to the vars vector to
generate 50 plots

lapply(vars, histDensity)

Another motivating example

I Let’s say I have 50 columns of numeric data in the data frame
dat and I want to generate the following summary for each
column

V1
max 2.182
90% 1.046
mean -0.090
50% -0.142
10% -1.249
min -1.699

The code for the summary

x <- dat[["V1"]]
qn <- quantile(x, probs = c(0.1, 0.5, 0.9))
s <- rev(round(c(min = min(x), qn[1], qn[2],

mean = mean(x), qn[3],
max = max(x)),3))

m <- matrix(data = s)
rownames(m) <- names(s)
colnames(m) <- "V1"
m

I I don’t want to copy-and-paste that code 50 times, or submit it
50 times each time changing the variable

The first step: create a function

mySummary <- function(v){
x <- dat[[v]]
qn <- quantile(x, probs = c(0.1, 0.5, 0.9))
s <- rev(round(c(min = min(x), qn[1], qn[2],

mean = mean(x), qn[3],
max = max(x)),3))

m <- matrix(data = s)
rownames(m) <- names(s)
colnames(m) <- v
m

}

I Notice that we basically took our existing code, inserted it
between function(v){ and }, replaced "V1" with v, and
assigned it the name mySummary

The function at work for V1

mySummary("V1")

V1
max 2.182
90% 1.046
mean -0.090
50% -0.142
10% -1.249
min -1.699

The function at work for V2

mySummary("V2")

V2
max 3.561
90% 1.245
mean 0.112
50% 0.025
10% -1.013
min -1.729

Second step: apply the function to the variable names

I Create a vector of variables names using the names function

vars <- names(dat)
head(vars)

[1] "V1" "V2" "V3" "V4" "V5" "V6"

I Then apply the function to the vars vector to generate 50
summaries

lapply(vars, mySummary)

I The printed result will be a list of 50 summaries

The basic recipe to automate repetitive tasks

1. Write a function
2. Apply function to data (a vector, columns of a data frame,

elements in a list)

The many ways of applying functions

I lapply returns a list
I sapply attempts to simplify results into a vector or matrix
I apply is for applying functions to rows/columns of a matrix

(or an array)
I map from the purrr package is similar to lapply but with

some extra functionality
I purrr provides several versions of map to control output, such

as map_chr, map_dbl, map_df

What about for loops?

I Traditional programming languages will often use for loops to
repeat tasks

I for loops can also be used in R. Example:

for(i in 1:ncol(dat)){
histDensity(names(dat)[i])

}

I for loops in R can be slow if lots of memory allocation is
happening with each iteration

I Some R users frown on loops
I My advice: if for loops make sense to you and they run fast

enough for you, use them

for loops vs apply/map

One argument for using apply/map is they make storing output
easier. Compare the two methods below:

I Storing output of mySummary with lapply

s.out <- lapply(names(dat),mySummary)

I Storing output of mySummary with for loop

s.out <- vector(mode = "list", length = ncol(dat))
for(i in 1:ncol(dat)){

s.out[[i]] <- mySummary(names(dat)[i])
}

Anonymous functions

I Functions don’t always have to be created and stored in
memory

I apply and map functions work with anonymous functions,
which are simply functions created on-the-fly

I Example: calculate standard error for random draws from a
N(0,1) distribution, with increasing sample size

n <- seq(20,80,by=20)
sapply(n, function(x)sd(rnorm(n = x))/sqrt(x))

[1] 0.2766387 0.1441126 0.1055953 0.1272554

Know when to apply/map

I Many functions in R are already vectorized, which mean they
essentially have a built-in looping mechanism

I Example: do not need to “apply” sqrt to x; the sqrt function
is vectorized

x <- c(4,9,16,25)
sqrt(x)

[1] 2 3 4 5

I The help page for sqrt states that it works on a numeric vector
I A function that is not vectorized is read.csv; it works on a

single file

Viewing output in R Markdown

I The output of a function applied to a large data frame or
vector can overwhelm the console or plotting window

I One option is to run the code in R Markdown
I R Markdown allows you to combine R code, output, plots and

exposition in one document
I Easiest way to get started:

1. File. . . New File. . . R Markdown. . .
2. Add a Title, leave “Document” and “HTML” selected, click OK
3. Review the document with sample code/text and click Knit
4. All code, output, plots and text are combined into one HTML

document

Let’s go to the R script

For the remainder of the workshop we’ll work through examples and
exercises for writing and applying R functions.

References

I Wickham, H. and Grolemund, G. (2017). R for Data Science,
O’Reilly: http://r4ds.had.co.nz/ (chs 17 - 21)

I Wickham, H. (2014) Advanced R, Chapman & Hall:
http://adv-r.had.co.nz/

I Grolemund, G. (2014). Hands-On Programming with R,
O’Reilly.

I Matloff, N. (2011). The Art of R Programming, Starch Press.

http://r4ds.had.co.nz/
http://adv-r.had.co.nz/

Thanks for coming

I For statistical consulting: statlab@virginia.edu
I Sign up for more workshops or see past workshops:

http://data.library.virginia.edu/training/
I Register for the Research Data Services newsletter to be

notified of new workshops:
http://data.library.virginia.edu/newsletters/

mailto:statlab@virginia.edu
http://data.library.virginia.edu/training/
http://data.library.virginia.edu/newsletters/

