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workshop outline

Topics on tap:
I Analysis of two-way contingency tables
I Analysis of three-way contingency tables
I Logistic regression

The focus will be on application, not statistical theory.



Categorical Data

In categorical data analysis, our response of interest (or dependent
variable) is categorical.

The measurement scale of categorical data is a set of categories.

Categories can be nominal or ordered.
I Nominal example: Thai, Mexican, Italian, Chinese
I Ordinal example: mild, medium, hot, very hot

Whether your data are nominal or ordinal determines what kinds of
statistical analyses you should use. Today we’ll focus on nominal
data with two categories.



Categorical data summaries and analyses

We typically tabulate category membership and calculate
proportions.

Examples of analyses:
I compare proportions between two categories
I examine the ratio of proportions or odds between two categories
I look for an assocation between two categorical variables
I model category proportions as a function of other variables
I model category counts as a function of other variables

The big idea of categorical data analysis is to find out if the
distribution of category membership is explained by or associated
with other variables.



Categorical data analysis in R

Three steps:

1. get data into R
2. manipulate it (if necessary) so it’s suitable for analysis and/or

visualization
3. run the analysis and/or create some graphs



Example 1

Relationship between aspirin use and myocardial infarction (heart
attacks) by the Physicians’ Health Study Research Group at Harvard
Medical School (NEJM, 318:262-264, 1988). Five year randomized
study testing whether regular intake of aspirin reduces mortality
from cardiovascular disease.

## MI
## group Yes No
## Placebo 189 10845
## Aspirin 104 10933

Are these two categorical variables associated?



Some analysis options

1. Hypothesis test of independence between two variables
(Chi-Square Test)

2. Compare proportion of MI for placebo group versus proportion
of MI for aspirin group. (Difference of Proportions)

3. Examine ratio of MI proportions. (Risk Ratio or Relative Risk)
4. Examine ratio of the estimated odds of MI. (Odds Ratio)



Getting the data into R “by hand”

We can enter this manually if we like.

aspirin <- matrix(data = c(189, 104, 10845, 10933),
ncol = 2,
dimnames = list(group =

c("Placebo","Aspirin"),
MI =

c("Yes","No")))

We now have a contingency table in the form of a matrix ready for
analysis.



Our matrix

aspirin

## MI
## group Yes No
## Placebo 189 10845
## Aspirin 104 10933

Notice the dimensions are labeled and the rows are in the order we
specified.



Converting matrix to a table

We can convert our matrix to a table object, like so:

aspirinT <- as.table(aspirin)
aspirinT

## MI
## group Yes No
## Placebo 189 10845
## Aspirin 104 10933

It doesn’t make a difference for analysis purposes but does allow for
some easy manipulation and visualization as we’ll see in the R script.



Getting the data into R by import

Data is often stored in txt, csv or xlsx formats, or stored in another
stats program. There are several ways to import such data into R.

I read.table
I read.csv
I read_csv in the readr package
I read_excel in the readxl package
I read_spss, read_sas, and read_stata in the haven

package

Importing data in this manner creates a data frame. To form a
contingency table from variables stored in a data frame, we can use
the table or xtabs functions.



Example of read.csv for importing data
If your csv file has a header, and the csv file is in your working
directory, then we simply need to give read.csv the name of the csv
file.

aspirin.df <- read.csv("aspirin.csv")
nrow(aspirin.df) # number of rows

## [1] 22071

head(aspirin.df) # first 6 rows

## group MI
## 1 Placebo No
## 2 Aspirin No
## 3 Placebo No
## 4 Aspirin No
## 5 Aspirin No
## 6 Aspirin No



A word about Factors
If we view the structure of aspirin.df we notice that each column
is stored as a Factor.

str(aspirin.df)

## 'data.frame': 22071 obs. of 2 variables:
## $ group: Factor w/ 2 levels "Aspirin","Placebo": 2 1 2 1 1 1 2 1 2 1 ...
## $ MI : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ...

The read.csv function imports character data as Factors, which
are integers with character levels. This is good for things like linear
modeling (eg, logistic regression).

If we didn’t want character data turned into Factors, we could have
done this:
read.csv("aspirin.csv", stringsAsFactors=FALSE).



The table function

table forms a contingency table from vectors. The first vector
becomes the rows and the second vector the columns. Notice the
rows and columns are placed in alphabetical order:

table(aspirin.df$group, aspirin.df$MI)

##
## No Yes
## Aspirin 10933 104
## Placebo 10845 189



The xtabs function

The xtabs function can create a table in two different ways:

1. from a data frame where there is one observation per record
2. from a data frame where each row represents total counts for

each group combination

Syntax:
I xtabs( ~ group + MI, data = aspirin.df) - one obs

per record
I xtabs(Freq ~ group + MI, data = aspirin.df) - each

row has total counts stored in column called Freq



xtabs example 1

This returns the same thing as table(aspirin.df$group,
aspirin.df$MI) except with rows and columns labeled:

xtabs(~ group + MI, data = aspirin.df)

## MI
## group No Yes
## Aspirin 10933 104
## Placebo 10845 189



xtabs example 2

Say our data frame looks like this:

aspirin.df2

## group MI Freq
## 1 Aspirin No 10933
## 2 Placebo No 10845
## 3 Aspirin Yes 104
## 4 Placebo Yes 189



xtabs example 2

We can use xtabs to create a table like so:

xtabs(Freq ~ group + MI, data = aspirin.df2)

## MI
## group No Yes
## Aspirin 10933 104
## Placebo 10845 189



Don’t forget to save tables if you want to analyze them

These just print tables to the R console:

table(aspirin.df$group, aspirin.df$MI)
xtabs(~ group + MI, data = aspirin.df)
xtabs(Freq ~ group + MI, data = aspirin.df2)

These save the tables for future use:

aspirin.tab1 <- table(aspirin.df$group, aspirin.df$MI)
aspirin.tab2 <- xtabs(~ group + MI, data=aspirin.df)
aspirin.tab3 <- xtabs(Freq ~ group + MI, data=aspirin.df2)



working with 2-way tables

We often want to work with tables to find proportions or marginal
totals. Good functions to know include:

I prop.table (cell proportions)
I margin.table (table margins)
I addmargins (add table margins)

We can also use subsetting brackets [] to extract cells, rows or
columns of tables.



prop.table example

prop.table calculates cell proportions.

Specify margin = 1 for row-wise proportions, margin = 2 for
column-wise proportions. Not specifying margin returns cell
proportions summing to 1.

prop.table(aspirinT, margin = 1)

## MI
## group Yes No
## Placebo 0.01712887 0.98287113
## Aspirin 0.00942285 0.99057715



margin.table example
margin.table calculates the marginal totals.

Specify margin = 1 for row-wise margins, margin = 2 for
column-wise margins. Not specifying margin sums all cell totals.

margin.table(aspirinT, margin = 1)

## group
## Placebo Aspirin
## 11034 11037

margin.table(aspirinT, margin = 2)

## MI
## Yes No
## 293 21778



addmargins example

The basic usage is to add row- and column-wise totals as well as the
table total. Specifying margin=1 or margin=2 shows only row or
column totals, respectively.

addmargins(aspirinT)

## MI
## group Yes No Sum
## Placebo 189 10845 11034
## Aspirin 104 10933 11037
## Sum 293 21778 22071

See ?addmargins for advanced usage.



Subsetting brackets

Specify row/column number, or row/column name, in brackets to
extract parts of a table.

Extract the row 1, column 1 cell:

aspirinT[1,1]

## [1] 189

or:

aspirinT["Placebo","Yes"]

## [1] 189



Subsetting brackets (cont’d)

Extract row 1 (the Placebo group):

aspirinT[1,]

## Yes No
## 189 10845

Extract column 2 (all cases of MI = “No”):

aspirinT[,"No"]

## Placebo Aspirin
## 10845 10933



Analysis: Chi-square test

The chi-square test of independence tests the null hypothesis that
two categorical variables are not associated with one another. We
can use the chisq.test function for this.

chisq.test(aspirinT)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: aspirinT
## X-squared = 24.429, df = 1, p-value = 7.71e-07

A low p-value rejects the null of no association. Notice it doesn’t
tell you the strength of association or the direction. A Chi-square
test is rarely sufficient for answering all the questions you’ll have
about your data.



Analysis: comparing proportions
Use the prop.test function to compare proportions of “successes”.
It can take a 2 x 2 table (or matrix) with counts of successes and
failures, respectively, in the columns.

prop.test(aspirinT)

##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: aspirinT
## X-squared = 24.429, df = 1, p-value = 7.71e-07
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.004597134 0.010814914
## sample estimates:
## prop 1 prop 2
## 0.01712887 0.00942285



A drawback of difference in proportions

Using the absolute difference between proportions to compare two
groups can be misleading. Example:

I The difference between 0.410 and 0.401 is 0.009.
I The difference between 0.010 and 0.001 is also 0.009.

However the latter difference seems more important if we compare
ratios:

I 0.410/0.401 = 1.02244
I 0.010/0.001 = 10

0.010 is 10 times larger than 0.001. A difference in proportions may
have greater importance when both proportions are near 0 or 1.



Analysis: risk ratios

The risk ratio (or relative risk) is simply the proportion of successes
in one group divided the proportion of successes in the other group.
A proportion of 1 implies no difference between the groups.

Risk ratio for aspirin data reveals the proportion of MI for placebo
group was about 82% higher:

prop.table(aspirinT, margin = 1)[1,1] /
prop.table(aspirinT, margin = 1)[2,1]

## [1] 1.817802

We’ll use the epitools package for easier calculation of risk ratios
and to obtain confidence intervals.



odds

We can also compare odds of success in one group versus odds of
success in another group.

The odds are related to probability as follows:

odds = p
1− p

I When p = 0.75, the odds are 0.75
0.25 = 3. We expect to observe 3

successes for every 1 failure.
I When p = 0.25, the odds are 0.25

0.75 = 1
3 . We expect to observe

about 1 success for every 3 failures.



odds ratios

When using odds to compare groups, we typically take the ratio of
the two odds.

The ratio of two odds is called an odds ratio. An odds ratio of 1
implies there is no difference between the odds of success in the two
groups.

A quick formula for calculating the odds ratio in a 2 x 2 table is

θ̂ = n11n22
n12n21

For this reason, the odds ratio is also known as the cross-product
ratio.



Analysis: odds ratios

For our aspirin data, the odds of MI in the placebo group is about
83% higher than the odds of MI in the aspirin group:

(aspirinT[1,1] * aspirinT[2,2]) /
(aspirinT[1,2] * aspirinT[2,1])

## [1] 1.832054

Again, we’ll use the epitools package for easier calculation of
odds ratios and to obtain confidence intervals.

Let’s go to R!



Example 2
Eight studies in China about smoking and lung cancer. (Intern. J.
Epidemiol., 21:197-201,1992) We investigate the relationship
between smoking and lung cancer while controlling for city.

## lung.cancer yes no
## city smoking
## Beijing smokers 126 100
## nonsmokers 35 61
## Shanghai smokers 908 688
## nonsmokers 497 807
## Shenyang smokers 913 747
## nonsmokers 336 598
## Nanjing smokers 235 172
## nonsmokers 58 121
## Harbin smokers 402 308
## nonsmokers 121 215
## Zhengzhou smokers 182 156
## nonsmokers 72 98
## Taiyuan smokers 60 99
## nonsmokers 11 43
## Nanchang smokers 104 89
## nonsmokers 21 36



Three-way contingency tables

The data on the previous slide have three categorical variables. The
tabular layout is a three-way contingency table.

This layout is useful when we want to compare two categorical
variables while controlling for a third categorical variable.

“Controlling for a third categorical variable” basically means holding
it at a constant level while analyzing the other two categorical
variables.

The two-way table formed when controlling for a third variable is
called a partial table.



Some analysis options

1. Test the null hypothesis that smoking and lung cancer are
conditionally independent given city, that is the odds ratio = 1
for each partial table (Cochran-Mantel-Haenszel Test)

2. Test the null hypothesis that the odds ratio between smoking
and lung cancer is the same at each level of city. (Breslow-Day
Test)

3. Estimate a common odds ratio if association seems stable
across the partial tables.



Getting data into R

We demonstrate how to get this data into R in the R script that
accompanies this workshop. The code doesn’t fit comfortably onto
slides.

The manual method involves the array function that allows us to
specify a third dimension, or third layer, of data.

Once again we can use the table and xtabs functions to create
our contingency tables if we import our data into a data frame.



The table function for 3-way tables
The first vector in the table function forms the rows, the second
the columns, and each subsequent vector a layer.

table(lc.df$smoking, lc.df$lung.cancer, lc.df$city)

## , , = Beijing
##
##
## no yes
## nonsmokers 61 35
## smokers 100 126
##
## , , = Harbin
##
##
## no yes
## nonsmokers 215 121
## smokers 308 402
##
## , , = Nanchang
##
##
## no yes
## nonsmokers 36 21
## smokers 89 104
##
## , , = Nanjing
##
##
## no yes
## nonsmokers 121 58
## smokers 172 235
##
## , , = Shanghai
##
##
## no yes
## nonsmokers 807 497
## smokers 688 908
##
## , , = Shenyang
##
##
## no yes
## nonsmokers 598 336
## smokers 747 913
##
## , , = Taiyuan
##
##
## no yes
## nonsmokers 43 11
## smokers 99 60
##
## , , = Zhengzhou
##
##
## no yes
## nonsmokers 98 72
## smokers 156 182



The xtabs function for 3-way tables
# one row per obs
xtabs( ~ smoking + lung.cancer + city, data = lc.df)

## , , city = Beijing
##
## lung.cancer
## smoking no yes
## nonsmokers 61 35
## smokers 100 126
##
## , , city = Harbin
##
## lung.cancer
## smoking no yes
## nonsmokers 215 121
## smokers 308 402
##
## , , city = Nanchang
##
## lung.cancer
## smoking no yes
## nonsmokers 36 21
## smokers 89 104
##
## , , city = Nanjing
##
## lung.cancer
## smoking no yes
## nonsmokers 121 58
## smokers 172 235
##
## , , city = Shanghai
##
## lung.cancer
## smoking no yes
## nonsmokers 807 497
## smokers 688 908
##
## , , city = Shenyang
##
## lung.cancer
## smoking no yes
## nonsmokers 598 336
## smokers 747 913
##
## , , city = Taiyuan
##
## lung.cancer
## smoking no yes
## nonsmokers 43 11
## smokers 99 60
##
## , , city = Zhengzhou
##
## lung.cancer
## smoking no yes
## nonsmokers 98 72
## smokers 156 182



If our data look like this. . .

head(lc.df2, n = 8)

## smoking lung.cancer city Freq
## 1 nonsmokers no Beijing 61
## 2 smokers no Beijing 100
## 3 nonsmokers yes Beijing 35
## 4 smokers yes Beijing 126
## 5 nonsmokers no Harbin 215
## 6 smokers no Harbin 308
## 7 nonsmokers yes Harbin 121
## 8 smokers yes Harbin 402



The xtabs function for 3-way tables
# one row per cell Freq
xtabs(Freq ~ smoking + lung.cancer + city, data = lc.df2)

## , , city = Beijing
##
## lung.cancer
## smoking no yes
## nonsmokers 61 35
## smokers 100 126
##
## , , city = Harbin
##
## lung.cancer
## smoking no yes
## nonsmokers 215 121
## smokers 308 402
##
## , , city = Nanchang
##
## lung.cancer
## smoking no yes
## nonsmokers 36 21
## smokers 89 104
##
## , , city = Nanjing
##
## lung.cancer
## smoking no yes
## nonsmokers 121 58
## smokers 172 235
##
## , , city = Shanghai
##
## lung.cancer
## smoking no yes
## nonsmokers 807 497
## smokers 688 908
##
## , , city = Shenyang
##
## lung.cancer
## smoking no yes
## nonsmokers 598 336
## smokers 747 913
##
## , , city = Taiyuan
##
## lung.cancer
## smoking no yes
## nonsmokers 43 11
## smokers 99 60
##
## , , city = Zhengzhou
##
## lung.cancer
## smoking no yes
## nonsmokers 98 72
## smokers 156 182



working with 3-way tables

Working with 3-way tables is a little trickier due to the third
dimension. We can use the same functions, but we need to account
for the third dimension.

I prop.table (cell proportions)
I margin.table (get table margins)
I addmargins (add table margins)
I ftable (“flatten” contingency tables into two dimensions)

We can also use subsetting brackets to extract parts of tables, but
again need to specify third dimension.



prop.table example
Specify margin = c(1,3) for row-wise proportions within each
two-way table; specify margin = c(2,3) for column-wise
proportions within each two-way table. Not specifying margin
returns cell proportions summing to 1.

prop.table(lung.cancer, margin = c(1,3))

## , , city = Beijing
##
## lung.cancer
## smoking yes no
## smokers 0.5575221 0.4424779
## nonsmokers 0.3645833 0.6354167
##
## , , city = Shanghai
##
## lung.cancer
## smoking yes no
## smokers 0.5689223 0.4310777
## nonsmokers 0.3811350 0.6188650
##
## , , city = Shenyang
##
## lung.cancer
## smoking yes no
## smokers 0.550000 0.450000
## nonsmokers 0.359743 0.640257
##
## , , city = Nanjing
##
## lung.cancer
## smoking yes no
## smokers 0.5773956 0.4226044
## nonsmokers 0.3240223 0.6759777
##
## , , city = Harbin
##
## lung.cancer
## smoking yes no
## smokers 0.5661972 0.4338028
## nonsmokers 0.3601190 0.6398810
##
## , , city = Zhengzhou
##
## lung.cancer
## smoking yes no
## smokers 0.5384615 0.4615385
## nonsmokers 0.4235294 0.5764706
##
## , , city = Taiyuan
##
## lung.cancer
## smoking yes no
## smokers 0.3773585 0.6226415
## nonsmokers 0.2037037 0.7962963
##
## , , city = Nanchang
##
## lung.cancer
## smoking yes no
## smokers 0.5388601 0.4611399
## nonsmokers 0.3684211 0.6315789



margin.table example

Specify margin = c(1,3) for row-wise margins within each
two-way table; specify margin = c(2,3) for column-wise margins
within each two-way table. Not specifying margin sums all cell
totals.

margin.table(lung.cancer, margin = c(1,3))

## city
## smoking Beijing Shanghai Shenyang Nanjing Harbin Zhengzhou Taiyuan
## smokers 226 1596 1660 407 710 338 159
## nonsmokers 96 1304 934 179 336 170 54
## city
## smoking Nanchang
## smokers 193
## nonsmokers 57



addmargins example
The basic usage is to add row- and column-wise totals as well as the
table total. Specifying margin=1 or margin=2 shows only row or
column totals, respectively.

addmargins(lung.cancer)

## , , city = Beijing
##
## lung.cancer
## smoking yes no Sum
## smokers 126 100 226
## nonsmokers 35 61 96
## Sum 161 161 322
##
## , , city = Shanghai
##
## lung.cancer
## smoking yes no Sum
## smokers 908 688 1596
## nonsmokers 497 807 1304
## Sum 1405 1495 2900
##
## , , city = Shenyang
##
## lung.cancer
## smoking yes no Sum
## smokers 913 747 1660
## nonsmokers 336 598 934
## Sum 1249 1345 2594
##
## , , city = Nanjing
##
## lung.cancer
## smoking yes no Sum
## smokers 235 172 407
## nonsmokers 58 121 179
## Sum 293 293 586
##
## , , city = Harbin
##
## lung.cancer
## smoking yes no Sum
## smokers 402 308 710
## nonsmokers 121 215 336
## Sum 523 523 1046
##
## , , city = Zhengzhou
##
## lung.cancer
## smoking yes no Sum
## smokers 182 156 338
## nonsmokers 72 98 170
## Sum 254 254 508
##
## , , city = Taiyuan
##
## lung.cancer
## smoking yes no Sum
## smokers 60 99 159
## nonsmokers 11 43 54
## Sum 71 142 213
##
## , , city = Nanchang
##
## lung.cancer
## smoking yes no Sum
## smokers 104 89 193
## nonsmokers 21 36 57
## Sum 125 125 250
##
## , , city = Sum
##
## lung.cancer
## smoking yes no Sum
## smokers 2930 2359 5289
## nonsmokers 1151 1979 3130
## Sum 4081 4338 8419



ftable example

By default, the third layer becomes the columns while the first and
second layers are collapsed into the rows. You can specify which
variables form the rows and columns using the row.vars and
col.vars arguments.

ftable(lung.cancer)

## city Beijing Shanghai Shenyang Nanjing Harbin Zhengzhou Taiyuan Nanchang
## smoking lung.cancer
## smokers yes 126 908 913 235 402 182 60 104
## no 100 688 747 172 308 156 99 89
## nonsmokers yes 35 497 336 58 121 72 11 21
## no 61 807 598 121 215 98 43 36



Subsetting brackets for 3-way tables

Just the partial table for Beijing:

lung.cancer[,,1]

## lung.cancer
## smoking yes no
## smokers 126 100
## nonsmokers 35 61

Or:

lung.cancer[,,"Beijing"]



Subsetting brackets for 3-way tables (cont’d)
All smokers with lung cancer:

lung.cancer["smokers","yes",]

## Beijing Shanghai Shenyang Nanjing Harbin Zhengzhou Taiyuan
## 126 908 913 235 402 182 60
## Nanchang
## 104

All people with lung cancer:

lung.cancer[,"yes",]

## city
## smoking Beijing Shanghai Shenyang Nanjing Harbin Zhengzhou Taiyuan
## smokers 126 908 913 235 402 182 60
## nonsmokers 35 497 336 58 121 72 11
## city
## smoking Nanchang
## smokers 104
## nonsmokers 21



Analysis: Cochran-Mantel-Haenszel (CMH) Test

Use the mantelhaen.test function to test the null hypothesis that
smoking and lung cancer are conditionally independent given city
(ie, odds ratio = 1 for each partial table)

##
## Mantel-Haenszel chi-squared test with continuity correction
##
## data: lung.cancer
## Mantel-Haenszel X-squared = 279.38, df = 1, p-value < 2.2e-16
## alternative hypothesis: true common odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.984002 2.383249
## sample estimates:
## common odds ratio
## 2.174482



Common odds ratio

It is more informative to estimate the strength of association than
test a hypothesis about it.

The mantelhaen.test also returns an estimate of the common
odds ratio along with a 95% confidence interval. The common odds
ratio is basically a weighted average of the partial table odds ratios.

For the lung cancer data, the commons odds ratio is estimated as
2.17(1.98, 2.38). The odds of lung cancer for smokers is about twice
the odds of lung cancer for non-smokers.

The CMH Test and common odds ratio estimate is really only
appropriate when association is similar in each table.



Analysis: Breslow-Day Test

We can use the BreslowDayTest function in the DescTools
package to test the null hypothesis that the odds ratio between
smoking and lung cancer is the same at each level of city.

As we’ll see in the R script, the result of the Breslow-Day Test for
our lung cancer data is not significant.

This means we’re justified in summarizing the conditional
association by a single odds ratio for all eight partial tables.

Let’s go to R!



Modeling categorical data

Another way to analyze categorical data is to model it as a linear
function of one or more explanatory variables.

By linear function we mean a weighted sum of variables. Say we
model Y as a linear function of X and Z and obtain the following:

Y = 0.65X + 0.04Z

This says we approximate Y by adding 0.65 * X and 0.04 * Z.



Logistic regression

We model categorical data using logistic regression.
I Binary logistic regression is for modeling binary outcomes (a

categorical variable with two levels)
I Multinomial logistic regression is for modeling multiple

unordered outcomes (a nominal categorical variable with more
than two levels)

I Ordered logistic regression is for modeling multiple ordered
outcomes (an ordered categorical variable with more than two
levels)

We will just cover binary logistic regression.



Example 3

Explore the relationship between age and presence/absence of
coronary heart disease (CHD) in a study population. (Table 1.1,
Applied Logistic Regression, 2nd Ed.)

## id age chd
## 1 1 20 0
## 2 2 23 0
## 3 3 24 0
## 4 5 25 1
## 5 4 25 0
## 6 7 26 0



Scatterplot of CHD by age
Difficult to describe this relationship based on this graph.
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Transform the data to better understand relationship

Calculate proportion of CHD within age groups.

## agrp n absent present proportion
## 1 <29 10 9 1 0.10
## 2 30-34 15 13 2 0.13
## 3 35-39 12 9 3 0.25
## 4 40-44 15 10 5 0.33
## 5 45-49 13 7 6 0.46
## 6 50-54 8 3 5 0.62
## 7 55-59 17 4 13 0.76
## 8 >60 10 2 8 0.80



Scatterplot of proportion with CHD by age group
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A function to model the relationship

Modeling the data in the previous graph essentially means finding a
smooth mathematical function that describes the relationship
between age and proportion with CHD.

The function would allow us to estimate the probability of CHD in
the study population given a certain age.

The function would also allow us to summarize how the probability
of CHD changes as age increases.

The function needs to work such that plugging in age produces a
number between 0 and 1. This is basically what logistic regression
ensures.



Performing logistic regression in R

We use the glm function with the family argument set to
binomial to perform logistic regression in R.

For the CHD, data this would be done as follows:

mod1 <- glm(chd ~ age, data = chd, family = binomial)

This performs binary logistic regression and saves the result to an
object we called mod1.

chd ~ age means “model chd as a function of age”.

To see the results:

summary(mod1)



logistic regression results



Reviewing the results

The “formula” for our functional model is in the “Coefficients”
section. For the model we fit:

P(chd) = −5.31 + 0.11 ∗ age

Both are significant, which is to say they are significantly different
from 0. (The intercept is almost always “significant”.)

The Null deviance summarizes goodness of fit for a model with no
predictors. The Residual deviance summarizes goodness of fit for
the model we fit. Ideally the residual deviance will be much smaller
than the null deviance.



The logit transformation

Notice if we plug in an age = 60, we get chd = 1.29. That’s
because the response is on the logit, or log-odds, scale!

The logit transformation transforms values ranging from 0 to 1, to
numbers ranging from −∞ to +∞.

To make our model return a number between 0 and 1, we need to
take the inverse logit. Fortunately R will do this for us. Here’s how:

predict(mod1, type="response",
newdata = data.frame(age = 60))

## 1
## 0.7934446



Our functional model with observed data
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Interpreting coefficients

If we exponentiate a variable’s coefficient in a logistic regression
model we get an odds ratio estimate of that variable’s effect on the
response.

exp(0.11) = 1.116

This says the odds of CHD increase by about 12% for every one
year increase in age. To see how the odds change for every 10 years
we could do this:

exp(0.11 * 10) = 3.004

The odds of CHD for a 50 year old are about 3 times that of a 40
year old.



Multiple logistic regression

The power of logistic regression is being able to include multiple
independent variables in your model, categorical or continuous. This
allows us to “control” for other variables.

The odds ratio interpetation of the coefficients is the same, but now
it is in the context of the additional variables being held constant.

Simply add additional variables to your model with +. For example:

mod2 <- glm(chd ~ age + smoking + bp, data = chd,
family = binomial)

Let’s go to R!



logistic regression and analysis of contigency tables

It turns out we can do most of the same analyses with logistic
regression that we did with contingency tables.

Recall the estimated odds ratio of MI for those on Placebo
vs. Aspirin in our two-way contingency table: 1.83

Recall the common odds ratio of lung cancer for smokers
vs. nonsmokers in our 3-way contingency table: 2.17



The aspirin data analyzed with logistic regression

mod.asp <- glm(MI ~ group, data = aspirin.df,
family = binomial)

coef(mod.asp) # the model coefficients

## (Intercept) groupPlacebo
## -4.6551501 0.6054377

# odds ratio estimate
exp(coef(mod.asp)[2])

## groupPlacebo
## 1.832054



The lung cancer data analyzed with logistic regression

Exponentiating the smoking coefficient provides the same common
odds ratio estimate as the Cochran-Mantel-Haenszel (CMH) Test.

mod.lc <- glm(lung.cancer ~ smoking + city, data = lc.df,
family = binomial)

# common odds ratio estimate
exp(coef(mod.lc)[2])

## smokingsmokers
## 2.175072



The lung cancer data analyzed with logistic regression

Including an interaction in a logistic regression with two categorical
predictors allows us to carry out a Breslow-Day test. The anova
function called on a modeling object tests the significance of the
interaction, which is the same as a Breslow-Day test.

mod.lc <- glm(lung.cancer ~ smoking + city
smoking:city, data = lc.df,
family = binomial)

# Breslow-Day test of homogeneity
# (ie, test if interaction is significant)
anova(mod.lc)

Let’s go to R!
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Thanks for coming today!

For help and advice with your statistical analysis:
statlab@virginia.edu

Sign up for more workshops or see past workshops:
http://data.library.virginia.edu/training/

Register for the Research Data Services newsletter to stay
up-to-date on RDS events and resources:
http://data.library.virginia.edu/newsletters/

mailto:statlab@virginia.edu
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