
Introduction to R
UVA StatLab Workshop Fall 2014

September 16, 2014

Introduction to R September 16, 2014 1 / 76

About R

R is
a program (like SPSS, Stata, SAS, etc.) for statistical computing and
graphics
an interpreted programming language

work with data interactively, line by line
replicate previous work easily

freely available (open-source) and maintained by volunteers
users can access and modify source code

Introduction to R September 16, 2014 2 / 76

Assumptions, Goals, and Expectations

Assumptions
No experience with R
Familiarity with basic statistical concepts

Goals
Get you comfortable enough to start using R

Expectations
You will not learn R in a 90 minute workshop
You must use R to learn R

Introduction to R September 16, 2014 3 / 76

The R Environment

Section 1

The R Environment

Introduction to R September 16, 2014 4 / 76

The R Environment Layout

R Startup

Introduction to R September 16, 2014 5 / 76

The R Environment Layout

RStudio Startup

Introduction to R September 16, 2014 6 / 76

The R Environment Layout

Console

Run code here
Type commands after the prompt, ”>”
Hit Return/Enter to run

Introduction to R September 16, 2014 7 / 76

The R Environment Layout

R Script

Although you can type commands directly into the console, you will more
likely want to put the commands in a script, so that you can reuse them.
To create a new script, click on button or File | New | R Script or
Ctrl + Shift + N.

Introduction to R September 16, 2014 8 / 76

The R Environment Layout

Running lines of code from a script
There are several different ways one can run a line from the script in the
Console pane

Individual lines can be run
by copying and pasting them from one window to the next
running the line of script where the cursor is by typing Ctrl R
running the line of script where the cursor is by clicking the Run button
at the top of the script pane

Running the whole script
type in the console pane source("scriptname")
clicking the Source button in the upper right corner of the script pane

Introduction to R September 16, 2014 9 / 76

The R Environment Layout

Workspace Pane

History Tab Keeps record of latest commands ran
Environment Tab List of objects active in memory

Introduction to R September 16, 2014 10 / 76

The R Environment Layout

Multipurpose Pane

Files in current workspace
View plots
List of installed packages
R Help

Introduction to R September 16, 2014 11 / 76

Importing Data

Section 2

Importing Data

Introduction to R September 16, 2014 12 / 76

Importing Data

Reading in text files

read.table() is the easiest and most reliable method of entering data
into R. It reads can recognize both numeric and character values but all
values will be read in as numeric.

> read.table("file", header = FALSE, sep = " ")

Note that read.table() fails if there are any spaces in any of the
variable names in the first row. You need to manually go into the file and
remove all blank spaces in names or replace the blanks with a period.

Introduction to R September 16, 2014 13 / 76

Importing Data

Reading excel datasets

R won’t import default excel files without loading a package because .xlsx
files could contain graphs or multiple tabs containing tables.
We can read in datasets from excel using two different methods.

1 by using the xlsx package and read.xlsx("file")
2 save the excel file (.xlsx) as a .csv and then use

read.csv("file",header=TRUE,sep=",")

> install.packages(xlsx)
> library(xlsx)
> data.xlsx <- read.xlsx("file.xlsx", sheetIndex = 1)

Introduction to R September 16, 2014 14 / 76

Importing Data

Setting Working Directory I

Say you have some data, data.txt, which is stored in
"C:/Users/MyName/Documents/R Stuff/"
To read the data, I’ll have to type:

> mydata <- read.table("C:/Users/MyName/Documents/R Stuff/data.txt",
+ header = TRUE)

Often it is easier to set a working directory so importing and saving files is
easier in the workspace.

> mydata <- read.table("data.txt", header = TRUE)

Introduction to R September 16, 2014 15 / 76

Importing Data

Setting Working Directory II

To set the working directory:
setwd("path"), where the path is the folder you want as your
directory.

Must use forward slash: / or double backslash: \\
Check if set correctly: getwd()

Select the appropriate folder/directory by
Ctrl + Shift + k
Session | Choose Directory ... (Windows)
or
Tools | Change working directory (Mac)

Introduction to R September 16, 2014 16 / 76

Importing Data

Setting Working Directory III
File tab in the Multipurpose pane

Introduction to R September 16, 2014 17 / 76

Importing Data

Packages I

Think of R/RStudio as an Operating System (e.g. Windows, Mac)
Packages are the ”applications” (e.g. MS Word, Chrome)
We need to click on the ”applications” to use them, aka install and
load in R as needed

Initial R download includes; base, graphics, stats, utils

Introduction to R September 16, 2014 18 / 76

Importing Data

Packages II

In order to install packages you must have an internet connection and
you need to know what the name of the package you want to install.

Packages only need to be installed once on a computer, until you
update your R version

> # installs package
> install.packages("MASS")

You also need to load the package everytime you wish to use the
package.

No need to re-load package within the same R session
Need to load the package again after terminating a R session

> # loads package
> library("MASS")
> # or
> require("MASS")

Introduction to R September 16, 2014 19 / 76

Writting Commands

Section 3

Writting Commands

Introduction to R September 16, 2014 20 / 76

Writting Commands Basics

Basics I

If incomplete command in console, will prompt ”+” instead of ”>”
either complete command or abort by hitting ESC

R is case sensitive, e.g. x not same as X
Commands are separated by a ; or by a newline
R ignores spaces. So can use white space to organize code. Thus can
use spacing around all infix operators (=, +, -, <-, etc.) and
after commas

Introduction to R September 16, 2014 21 / 76

Writting Commands Basics

Basics II

Comments
start with ”#” sign
Keyboard shortcut is Ctrl+Shift+C

> # This is a comment. When a # is placed somewhere on a
> # line, everything after the sign is considered a
> # comment (including other #s)

Introduction to R September 16, 2014 22 / 76

Writting Commands R as calculator

R as a calculator

R works like a calculator, you type an expression and you get the answer.
The standard arithmetic operators are +, -, *, /, ˆ.

> 15 + 10

[1] 25

> 12/6

[1] 2

> 0.7 * 5

[1] 3.5

Just like any calculator, these
operators have the standard
precedence (e.g.
exponentiation highest and
addition/subtraction lowest),
but you can always control the
order of evaluation with
parentheses.

Introduction to R September 16, 2014 23 / 76

Writting Commands Variables/Objects

Variables/Objects I

A variable is used to store information, whether data, a computation
result, a word, or an image.
Technically, a variable represents a memory location, but you can
think of it like a label for some object.
Do not need to be declared before (like some other computer
programs), but are created as soon as an object is assigned to it.

Introduction to R September 16, 2014 24 / 76

Writting Commands Variables/Objects

Variables/Objects II

To assign a name to a variable one must use the assignment operator
<- or =.
> value1 <- 22 #stores 22 in value1
> value2 <- 22/7 #stores the result of 22/7 in value2

To recall the value stored in a variable, type out the variable name in
the console to have the value stored print out.
> value1

[1] 22

> value2

[1] 3.143

Introduction to R September 16, 2014 25 / 76

Writting Commands Variables/Objects

Variables/Objects III

Can be made out of letters, numbers, and the dot (.) or underline
(_) characters (no blank spaces).

3value <- 100 will not work (can’t start with number)
.value <- 100
.3value <- 100 will not work (can’t have a number after a .)
value <- 100
value 3 <- 100 will not work (can’t have spaces)

Just like everything else in R, variables are case sensitive
> value3 <- 100
> value3

[1] 100

> Value3

Error: object ’Value3’ not found

Introduction to R September 16, 2014 26 / 76

Writting Commands Variables/Objects

Variables/Objects IV

stored objects can be used in subsequent operations
> value1

[1] 22

> value1/2

[1] 11

results can be stored in a new object
> new.value <- value1/2
> new.value

[1] 11

Introduction to R September 16, 2014 27 / 76

Writting Commands Variables/Objects

Variables/Objects V

objects of the same name will be overwritten
> value4 <- 5ˆ2
> value4

[1] 25

> value4 <- sqrt(100)
> value4

[1] 10

Introduction to R September 16, 2014 28 / 76

Writting Commands Variables/Objects

R Data Structures

R’s base data structures can be organized by their dimensionality (0d, 1d,
or 2d) and whether they’re homogeneous (all contents must be the same
type) or heterogeneous (contents can be of different types).

0d Scalar
1d Vector List
2d Matrix Dataframe

Introduction to R September 16, 2014 29 / 76

Vectors

Section 4

Vectors

Introduction to R September 16, 2014 30 / 76

Vectors Making Vectors

Vectors, x1, x2, . . . , xn

A vector is a collection of values (1-dimensional array), all of the same
type, ordered in a certain way.

Five common types (or class) of vectors
1 logical (TRUE, FALSE)
2 integer (1, 2, 3, . . .)
3 double/numeric (1.0, 1.5, . . .)
4 character/string (”a”, ”b”, ...)
5 factor (a categorical variable with predefined levels)

By default, R treats all variables as vectors, unless otherwise specified,
even if the variable holds only one value.

Introduction to R September 16, 2014 31 / 76

Vectors Making Vectors

Combine/Concatenate I

Vectors are usually made with c(), short for combine or concatenate,
in which the arguments are seperated by a ”,”.
The order in which the entries are inputed is very important, as it is
how R stores the entries inside the vector.

> dbl_var <- c(1, 2.5, 4.5)
> dbl_var

[1] 1.0 2.5 4.5

Introduction to R September 16, 2014 32 / 76

Vectors Making Vectors

Combine/Concatenate II
> # With the L suffix, you get an integer rather than a
> # double
> int_var <- c(1L, 6L, 10L)
> int_var

[1] 1 6 10

> # Use TRUE and FALSE (or T and F) to create logical
> # vectors
> log_var <- c(TRUE, FALSE, T, F)
> log_var

[1] TRUE FALSE TRUE FALSE

> # character or strings are enclosed in ' '
> chr_var <- c("Rob", "Tess", "Megan", "Kevin", "Liam")
> chr_var

[1] "Rob" "Tess" "Megan" "Kevin" "Liam"
Introduction to R September 16, 2014 33 / 76

Vectors Making Vectors

Class of Object

We can find the type/class of any R object using class().

> class(dbl_var)

[1] "numeric"

> class(log_var)

[1] "logical"

Introduction to R September 16, 2014 34 / 76

Vectors Making Vectors

Numeric Sequences

To make a sequence of numbers, one can use one of two methods (both
allow both positive and negative numbers)

1 a:b creates a sequence of numbers starting at a and
increasing/decreasing by 1 integer value until it gets to b
> 1:3

[1] 1 2 3

> 3:1

[1] 3 2 1

2 seq(from, to, by=1) creates a sequence of numbers starting at the
from value and increasing/decreasing by 1 interger value until it gets
to the to value
> seq(1, 3, by = 0.5)

[1] 1.0 1.5 2.0 2.5 3.0

Introduction to R September 16, 2014 35 / 76

Vectors Making Vectors

Repeating I

One can also create a vector using the rep() function, short for
repeat/replicate.

Given a vector one can also repeat the vector n times
rep(vector, times)

> rep(1:3, 2)

[1] 1 2 3 1 2 3

> rep(c(1, 2, 3), times = c(1, 2, 3))

[1] 1 2 2 3 3 3

Introduction to R September 16, 2014 36 / 76

Vectors Making Vectors

Repeating II

Or one can also repeat each element in the vector n times in a row
rep(vector, each) or rep(vector, times)

> rep(1:3, c(2, 2, 2))

[1] 1 1 2 2 3 3

> rep(c(1, 2, 3), each = 3)

[1] 1 1 1 2 2 2 3 3 3

Introduction to R September 16, 2014 37 / 76

Vectors Vector Operations

Combining vectors

One can also combine vectors into a new vector by using the concantenate
function, c(). This function takes not only individual elements but can
take vectors or even a combination of both to make a new vector.

> girls <- c("Juliet", "Sierra")
> boys <- c("Romeo", "Oscar")
>
> everyone <- c(girls, boys)
> everyone

[1] "Juliet" "Sierra" "Romeo" "Oscar"

> everyone <- c(boys, girls)
> everyone

[1] "Romeo" "Oscar" "Juliet" "Sierra"

Introduction to R September 16, 2014 38 / 76

Vectors Vector Operations

Subsetting Vectors

The typical notation used is square brackets specifying what index
value should be extracted or removed.
One can also remove or extract several elements from a vector by
using a vector of indexes as the argument insides the brackets.
Again the order of the argument values do affect the way that the
information is printed/stored.
Neither of these actions permanently change the data, unless you
assign it as such.

Introduction to R September 16, 2014 39 / 76

Vectors Vector Operations

Subset a Vector I

1 Extract values - using positive integers return elements at the
specified positions
> x <- c(2.1, 4.2, 3.3, 5.4)
> x[c(3, 1)]

[1] 3.3 2.1

> # Duplicated indices yield duplicated values
> x[c(1, 1)]

[1] 2.1 2.1

> # Real numbers are silently truncated to integers
> x[c(2.1, 2.9)]

[1] 4.2 4.2

Introduction to R September 16, 2014 40 / 76

Vectors Vector Operations

Subset a Vector II

2 Omit Values - negative integers omit elements at the specified
positions
> x

[1] 2.1 4.2 3.3 5.4

> x[-c(3, 1)]

[1] 4.2 5.4

> x[-3]

[1] 2.1 4.2 5.4

Introduction to R September 16, 2014 41 / 76

Vectors Vector Operations

Replacing a value

Sometimes, data is inputed wrong and a value of a vector or other data
structure needs to be replaced with the correct value.

> x <- c(2, 4, 6, 8)
> x[1] <- 1 #replaces the first index value with the value 1
> x

[1] 1 4 6 8

> x[c(2, 3)] <- c(2, 3)
> x

[1] 1 2 3 8

Introduction to R September 16, 2014 42 / 76

Vectors Vector Operations

Built in Vector Functions I

R operations are vectorized, so can perform actions without having to use
a loop. If x is a vector, then log(x) is a vector with the logs of the
elements of x.

Arithmetic and relational operators also work element by element. If x
and y are vectors of the same length, then x+y is a vector with
elements equal to the sum of the corresponding elements of x and y.
If x and y are vectors of different lengths, the shorter one is recycled
as needed.

Introduction to R September 16, 2014 43 / 76

Vectors Vector Operations

Built in Vector Functions II

> x <- c(2, 4, 6, 8)
> y <- c(7, 8, 3, 1)
> 2 * x #multiplication

[1] 4 8 12 16

> y + 3 #addition

[1] 10 11 6 4

> x + y #adds 1st entries, adds 2nd entries, etc.

[1] 9 12 9 9

> x * y

[1] 14 32 18 8

Introduction to R September 16, 2014 44 / 76

Vectors Vector Operations

Built in Vector Functions III

> x

[1] 2 4 6 8

> y

[1] 7 8 3 1

> sum(x) #summation

[1] 20

> mean(y) #average

[1] 4.75

Introduction to R September 16, 2014 45 / 76

Vectors Vector Operations

Logical operations I

Logical expressions use logical operators to evaluate whether something is
TRUE or FALSE

>, >=, <, <=

> x <- rep(1:3, 2)
> x

[1] 1 2 3 1 2 3

> x >= 3

[1] FALSE FALSE TRUE FALSE FALSE TRUE

> x < 2

[1] TRUE FALSE FALSE TRUE FALSE FALSE

Introduction to R September 16, 2014 46 / 76

Vectors Vector Operations

Logical operations II

Equal: ==; Not equal: !=

> x == 1

[1] TRUE FALSE FALSE TRUE FALSE FALSE

> x != 1

[1] FALSE TRUE TRUE FALSE TRUE TRUE

And: &; Or: |
> x

[1] 1 2 3 1 2 3

> x > 1 & x < 3

[1] FALSE TRUE FALSE FALSE TRUE FALSE

> x == 1 | x == 2

[1] TRUE TRUE FALSE TRUE TRUE FALSE

Introduction to R September 16, 2014 47 / 76

Dataframes

Section 5

Dataframes

Introduction to R September 16, 2014 48 / 76

Dataframes

Dataframes I

Dataframes are used for storing data tables (similar to a matrix).
Most built-in data sets and any read in data are dataframe objects
The rows contain different observations from the study
The columns contain the values of different variables of which contain
different data types and usually labeled

Introduction to R September 16, 2014 49 / 76

Dataframes

Dataframes II

Create dataframes with data.frame(vectors) (and specify column
names)
> my.score <- c(1, 3, 2, 2, 4)
> my.names <- c("Rob", "Tess", "Megan", "Kevin", "Liam")
> my.gender <- c("M", "F", "F", "M", "M")
> my.dat <- data.frame(Score = my.score, Names = my.names,
+ Gender = my.gender)
> my.dat

Score Names Gender
1 1 Rob M
2 3 Tess F
3 2 Megan F
4 2 Kevin M
5 4 Liam M

Introduction to R September 16, 2014 50 / 76

Dataframes

Dataframes III

> # install.packages('car')
> library(car)
>
> # Load the Vocab data from the car package
> data(Vocab)
>
> # check if dataframe
> class(Vocab)

[1] "data.frame"

Introduction to R September 16, 2014 51 / 76

Dataframes

Obtaining General Information I

What are the dimensions (rows x columns)?
> dim(Vocab)

[1] 21638 4

> nrow(Vocab)

[1] 21638

> ncol(Vocab)

[1] 4

What are the variables names in the dataset?
> names(Vocab)

[1] "year" "sex" "education" "vocabulary"

Introduction to R September 16, 2014 52 / 76

Dataframes

Obtaining General Information II

What are the first 6 observations of the dataset?
> # default head(data, n=6)
> head(Vocab)

year sex education vocabulary
20040001 2004 Female 9 3
20040002 2004 Female 14 6
20040003 2004 Male 14 9
20040005 2004 Female 17 8
20040008 2004 Male 14 1
20040010 2004 Male 14 7

Introduction to R September 16, 2014 53 / 76

Dataframes

Obtaining General Information III

What are the last 6 observations of the dataset?
> # default tail(data, n=6)
> tail(Vocab)

year sex education vocabulary
19982818 1998 Male 14 4
19982819 1998 Female 12 4
19982821 1998 Male 12 5
19982822 1998 Male 12 5
19982825 1998 Male 13 8
19982828 1998 Female 14 6

Introduction to R September 16, 2014 54 / 76

Dataframes

Attaching Dataset

We can make the columns of a dataframe into individual vectors
accessible by their name within the R session using attach()

Note - These vectors won’t show up in the workspace window
We can remove the vector variables created by attach() using
detach()

> attach(Vocab)
> year[1:10]

[1] 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004

> detach(Vocab)
> year

Error: object ’year’ not found

Introduction to R September 16, 2014 55 / 76

Dataframes

Subsetting Datasets I

One can also subset matrices and dataframes using the general bracket
notation introduced with vectors. Two arguments are required within the
square brakets, one to reference the row(s) and one to reference the
column(s)

> # first row, first column
> Vocab[1, 1]

[1] 2004

> # first two entries in row 1 and row 2
> Vocab[1:2, 1:2]

year sex
20040001 2004 Female
20040002 2004 Female

Introduction to R September 16, 2014 56 / 76

Dataframes

Subsetting Datasets II

> # entire first row
> Vocab[1,]
> # entire first column
> Vocab[, 1]

If the dataset (dataframe) contains headers for the columns, we can also
grab a specific column by using the $ and/or specific column
name/header.

> Vocab$year[1:5]

[1] 2004 2004 2004 2004 2004

> Vocab[1:5, "year"]

[1] 2004 2004 2004 2004 2004

Introduction to R September 16, 2014 57 / 76

Dataframes

Subsetting Datasets III

We can remove column(s) or row(s) from a dataframe by using a scalar or
vector negative value(s) within the square brackets

> head(Vocab, n = 3)

year sex education vocabulary
20040001 2004 Female 9 3
20040002 2004 Female 14 6
20040003 2004 Male 14 9

> temp <- Vocab[, -1]
> head(temp, n = 3)

sex education vocabulary
20040001 Female 9 3
20040002 Female 14 6
20040003 Male 14 9

Introduction to R September 16, 2014 58 / 76

Dataframes

Subsetting Datasets IV

We can add column(s) or row(s) from a dataframe by using the functions
cbind() and rbind(), respectively.

> attach(Vocab)
> temp <- cbind(Vocab, log(vocabulary))
> head(temp, n = 3)

year sex education vocabulary
20040001 2004 Female 9 3
20040002 2004 Female 14 6
20040003 2004 Male 14 9

log(vocabulary)
20040001 1.099
20040002 1.792
20040003 2.197

Introduction to R September 16, 2014 59 / 76

Graphics

Section 6

Graphics

Introduction to R September 16, 2014 60 / 76

Graphics

Histograms

> names(Vocab)

[1] "year" "sex" "education" "vocabulary"

> hist(vocabulary)

Histogram of vocabulary

vocabulary

F
re

qu
en

cy

0 2 4 6 8 10

0
10

00
20

00
30

00
40

00

Introduction to R September 16, 2014 61 / 76

Graphics

Boxplots I

> boxplot(vocabulary)

0
2

4
6

8
10

Introduction to R September 16, 2014 62 / 76

Graphics

Boxplots II

> boxplot(vocabulary ˜ year)

1974 1978 1984 1988 1990 1993 1996 2000

0
2

4
6

8
10

Introduction to R September 16, 2014 63 / 76

Graphics

Scatterplots I

The plot() function draws axes and adds a scatterplot of points. Two
extra functions exist points() and lines() which add extra points or
lines to an existing plot.
Two ways to write the parameters for any of these functions

Cartesian, plot(x,y)

Formula, plot(y˜x)

There are 256 different plotting symbols available, in which the default is
pch=1

Introduction to R September 16, 2014 64 / 76

Graphics

Scatterplots II

> data1 <- read.table("scatter1.txt", header = TRUE)
> attach(data1)
> names(data1)

[1] "xv" "ys"

> data2 <- read.table("scatter2.txt", header = TRUE)
> attach(data2)
> names(data2)

[1] "xv2" "ys2"

Introduction to R September 16, 2014 65 / 76

Graphics

Scatterplots III

> # making a scatterplot
> plot(xv, ys)

0 20 40 60 80 100

20
30

40
50

60

xv

ys

Introduction to R September 16, 2014 66 / 76

Graphics

Scatterplots IV

The plot() function by default plots points, so to create lines you
need to include the parameter type="l", which will draw by default a
solid black line.
While most plots in R are given a default title, this title is not often
representative of what the plot represents so often you want to relabel
the title.

1 plot(x,y, main="Title")
2 after your graphic code use the title() function,

title(main="Title")

Introduction to R September 16, 2014 67 / 76

Graphics

Scatterplots V

The characteristic of this line can be changed by defining the line
type, lty=, and the line width, lwd=. Both of these take a positive
number as their input value.

For lwd= the larger the number the thicker the line gets
For lty=

1 – ”solid line”
2 – ”dashed line”
3 – ”dotted line”

Colors of points or lines can be changed by using the parameter
col= inside of the plot(),lines() or points() functions.

Introduction to R September 16, 2014 68 / 76

Graphics

Scatterplots VI

> plot(xv, ys)
> points(xv2, ys2, col = "blue", pch = 16)
> title("Scatterplot")

0 20 40 60 80 100

20
30

40
50

60

xv

ys
Scatterplot

Introduction to R September 16, 2014 69 / 76

Graphics

Scatterplots VII

> plot(xv, ys, type = "l", col = "red")
> lines(xv2, ys2, lty = 2, col = "blue")

0 20 40 60 80 100

20
30

40
50

60

xv

ys

Introduction to R September 16, 2014 70 / 76

Graphics

Scatterplots VIII

> plot(xv, ys)
> points(xv2, ys2, col = "blue", pch = 16)
> # adding legend
> legend("topleft", c("treatment", "control"), pch = c(1,
+ 16), col = c("black", "blue"))

0 20 40 60 80 100

20
30

40
50

60

xv

ys

treatment
control

Introduction to R September 16, 2014 71 / 76

Hypothesis testing

Section 7

Hypothesis testing

Introduction to R September 16, 2014 72 / 76

Hypothesis testing

T-test I

One Sample, t.test(x,mu= , alt="two.sided")
Assume data is i.i.d. sequence from a N(µ, σ) distribution (both µ and
σ are unknown) or that n is large enough for the CLT to apply

H0 : µ = µ0 versus H1 : µ < µ0, µ > µ0, or µ 6= µ0

Two Sample, t.test(x,y,alt="two.sided",var.equal=FALSE)
Assume data X1, . . . ,Xnx and Y1, . . . ,Yny are independent random
samples from a N(µx , σx) and N(µy , σy) distributions (both µ’s and
σ’s are unknown)

H0 : µx = µy versus H1 : µx < µy , µx > µy , or µx 6= µy

Introduction to R September 16, 2014 73 / 76

Hypothesis testing

T-test II

(Using the scatter1.txt and scatter2.txt)

> t.test(ys, mu = 40, alt = "greater")

One Sample t-test

data: ys
t = 0.1426, df = 1999, p-value = 0.4433
alternative hypothesis: true mean is greater than 40
95 percent confidence interval:
39.69 Inf

sample estimates:
mean of x

40.03

Introduction to R September 16, 2014 74 / 76

Hypothesis testing

T-test III

> t.test(ys, ys2)

Welch Two Sample t-test

data: ys and ys2
t = 5.678, df = 289.4, p-value = 3.311e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
2.833 5.839

sample estimates:
mean of x mean of y

40.03 35.69

Introduction to R September 16, 2014 75 / 76

Hypothesis testing

Resources

Quick-R
http://www.statmethods.net/

Cookbook for R
http://www.cookbook-r.com/

R reference card
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Introduction to R September 16, 2014 76 / 76

http://www.statmethods.net/
http://www.cookbook-r.com/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

	The R Environment
	Layout

	Importing Data
	Writting Commands
	Basics
	R as calculator
	Variables/Objects

	Vectors
	Making Vectors
	Vector Operations

	Dataframes
	Graphics
	Hypothesis testing

