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What are Linear Mixed-Effect Models?

Linear models with fixed and random effects.

LME (Linear Mixed-Effect) models are suitable for clustered,
longitudinal or repeated-measures data in which the data are
grouped by random levels and the dependent variable is continuous.

“Grouped by random levels” means there are several observations
that belong to a single subject or object that can be thought of as a
random sample from a population.

These groups are sometimes referred to as “random effects”.



Candidate for linear mixed-effect modeling

We have a new medical treatment. We carry out an experiment
where we randomly prescribe the treatment or placebo to patients
and collect response data every week for two months to gauge
efficacy.

I Treatment is the fixed effect. Other fixed effects may include
age, gender, weight, time, etc. If we were to replicate this
study, we would use these variables again.

I The data is grouped by patients, a sample from a population.
We will likely have random effects associated with patients. If
we were to replicate this study, we would not use the same
patients again.



Another candidate for linear mixed-effect modeling

We have a new computer-based math curriculum. We carry out an
experiment where we randomly prescribe either the new curriculum
or current curriculum to teachers in various schools and measure
change in student pre- and post-test scores.

I Curriculum is the fixed effect. Other fixed effects might include
gender, race, etc. If we were to replicate this study, we would
use these variables again.

I The data is grouped by school, and teacher within school. We
will likely have random effects associated with schools and
teachers. If we were to replicate this study, we would not
necessarily use the same teachers and schools again.



Example of fixed effect vs random effect

In our medical treatment example, let’s say we add age to our
model.

We get a coefficient for age that summarizes the relationship
between age and the response.

If we think the relationship between age and the response varies
between patients, we “add a random effect for age”. This produces
an estimate of variability of how the age coefficient differs between
patients.

Fixed effects have coefficients.
Random effects have estimates of variation.



Specification of a Linear Model

Let’s review the specification for a basic linear model:

Y = Xβ + ε

ε ∼ N(0, σ)

where Xβ = β0 + β1X1i + β2X2i + ...+ βkXki .

This says our dependent variable (Y ) is equal to our independent
variables (X) multiplied by coefficients (β) and added up, plus some
random error (ε) that comes from a Normal distribution with mean
0 and standard deviation σ.

A key assumption is the independence of the random errors.



Simple data for a linear model
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Fitting a linear model in R

m1 <- lm(y ~ x)
coef(m1) # model coefficients

## (Intercept) x
## 0.5525 0.7940

summary(m1)$sigma # estimate of error standard deviation

## [1] 0.3611



Visualizing a linear model
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Specification of a Linear Mixed-Effect Model

The linear mixed-effect model is more complex:

Yi = Xi β + Zi bi + εi

bi ∼ N(0,D)

εi ∼ N(0,Ri )

Notice the i subscript. Linear mixed-effect models are fit to groups
of data, say repeated measures made on subjects. Xi are the
predictors. β are the fixed effect coefficients. Zi is a subset of the
predictors. bi are the random effect predictions. The εi are the
random errors.

In contrast to a standard linear models, random errors can be
correlated.



Random effects and errors

In a standard linear model we just have to estimate one random
error parameter: σ

In a linear mixed-effect model we have two matrices of error
structures:
- one for the random effects: D
- one for the random errors: Ri

D is sometimes referred to as between-groups variation while Ri is
called within-groups variation

These matrices can take on different structures.



What do we mean by “structures”?

The D and Ri matrices are known as variance-covariance matrices.

The variance is on the diagonal. The covariance is on the
off-diagonal. For example, a D matrix for two random effects might
be structured as follows:

(
σ2

b1 σb1,b2
σb1,b2 σ2

b2

)

In this matrix there are three parameters to estimate: σ2
b1, σ2

b2, and
σb1,b2. This structure assumes the two random effects have
covariance, ie, they vary together. This is the default in R when you
specify that two predictors have random effects.



Example of another D matrix structure

We could also constrain the covariance to be 0 in a D matrix, like
so:

(
σ2

b1 0
0 σ2

b2

)

In this matrix there are only two parameters to estimate, σ2
b1 and

σ2
b2, since we assume covariance is 0.



Example of a Ri matrix structure

The simplest covariance matrix for the random errors is the diagonal
structure:


σ2 0 · · · 0
0 σ2 · · · 0
...

... . . . ...
0 0 · · · σ2


This says that residuals associated with observations on the same
subject have equal variance and are uncorrelated. We only have one
parameter to estimate. This is the same as the standard linear
model. This is the default in R and all that we’ll cover today.



Simple data for a linear mixed-effect model
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What do we notice about the data?

I The different groups seem to have the same trajectory, or slope
I The different groups seem to have different starting points, or

intercepts
I Each group of data appears as if it could be modeled by a

straight line model

If we were to imagine what kind of mathematical process gave rise
to this data, we might propose a straight line model with a fixed
slope coefficient but a random intercept.



Fitting a linear mixed-effect model in R
Fit a model with a “random” intercept

library(lme4) # package for fitting lme
lme1 <- lmer(y ~ x + (1 | g), data = dat)
fixef(lme1) # fixed effect estimates

## (Intercept) x
## 0.6106 1.4972

VarCorr(lme1) # D and R estimates

## Groups Name Std.Dev.
## g (Intercept) 0.828
## Residual 0.189



Visualizing a linear mixed-effect model

Y = (0.61 + N(0, 0.83)g) + 0.49X + N(0, 0.19)
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Random slopes
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What do we notice about the data?

I The different groups seem to have the same intercept
I The different groups seem to have different slopes
I Each group of data appears as if it could be modeled by a

straight line model

If we were to imagine what kind of mathematical process gave rise
to this data, we might propose a straight line model with a fixed
intercept coefficient but a random slope.



Fit a LME model for a random slope

lme2 <- lmer(y ~ x + (-1 + x | g), data = dat)
fixef(lme2) # fixed effect estimates

## (Intercept) x
## 0.4962 1.6111

VarCorr(lme2) # D and R estimates

## Groups Name Std.Dev.
## g x 0.820
## Residual 0.189



Visualizing the fit

Y = 0.49 + (1.61 + N(0, 0.82)g)X + N(0, 0.19)
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Random intercepts and slopes
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Fit LME model for random intercept and slope

lme3 <- lmer(y ~ x + (x | g), data = dat)
fixef(lme3)

## (Intercept) x
## 0.6097 1.8654

VarCorr(lme3)

## Groups Name Std.Dev. Corr
## g (Intercept) 1.071
## x 1.018 -0.08
## Residual 0.181



Visualizing the fit

Y = (0.61 + N(0, 1.07)g) + (1.87 + N(0, 1.02)g)X + N(0, 0.19)
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Packages for fitting LME

The two most commonly used R packages for fitting linear
mixed-effect models are nlme and lme4.

I nlme: older package, comes with R, very stable; can fit linear
and non-linear mixed-effect models; allows fitting of various
covariance structures for random effects and residual errors.

I lme4: newer package, does not come with R; can fit linear,
generalized linear, and nonlinear mixed-effect models; can also
fit models with crossed random effects; does not currently allow
fitting various covariance structures for residual errors; uses
different computations than nlme that makes it better for
larger data.



lme4

For today’s workshop we’ll use lme4.

The syntax is a little easier to learn than nlme.

It’s worth repeating: lme4 does not currently provide facilities for
modeling different variance-covariance structures for residuals, Ri .
Residual errors are assumed to be Normally distributed with mean 0
and variance σ2.

By the way, the “4” in lme4 refers to the technical fact that lme4
was programmed using the S4 system in R.



Data in Long Format

In R, LME data need to be in long format. That is, we have one
record per subject per each measure of the dependent variable.

## Reaction Days Subject
## 1 249.6 0 308
## 2 258.7 1 308
## 3 250.8 2 308
## 4 321.4 3 308
## 5 356.9 4 308
## 6 414.7 5 308

The dependent variable is Reaction. Notice we have one record
per subject per each measure of Reaction. Here, Subject is the
random effect.



Fitting a model with lme4

Assuming one predictor and one level of grouping, say repeated
measures on subjects.

Random intercept:
lme01 <- lmer(dv ~ x1 + (1 | g), data=df)

Random slope:
lme02 <- lmer(dv ~ x1 + (-1 + x1 | g), data=df)

Correlated random slope and intercept:
lme03 <- lmer(dv ~ x1 + (x1 | g), data=df)

Uncorrelated random slope and intercept:
lme04 <- lmer(dv ~ x1 + (x1 || g), data=df)

Of course we can have multiple predictors and random effects.



Fitting a model with lme4

Assuming one predictor and two levels of grouping, say teachers
within schools:

Random intercept:
lme01 <- lmer(dv ~ x1 + (1 | sch/tch), data=df)
Or: lme01 <- lmer(dv ~ x1 + (1 | sch) + (1 | sch:tch),
data=df)

Random slope:
lme02 <- lmer(dv ~ x1 + (-1 + x1 | sch/tch), data=df)

Correlated random slope and intercept:
lme03 <- lmer(dv ~ x1 + (x1 | sch/tch), data=df)

Uncorrelated random slope and intercept:
lme04 <- lmer(dv ~ x1 + (x1 || sch/tch), data=df)

Again we can have multiple predictors and random effects.



Selected lme4 extractor functions

Once we fit a model, lme4 has several functions for extracting and
viewing model information:

I summary() - summary of fitted LME
I fixef() - estimated fixed effect coefficients, β
I ranef() - predicted random effects, bi
I coef() - coefficients for each group, β and β + bi
I VarCorr() - estimated variance parameters, D and Ri
I resid() - residuals, or estimated random errors, εi

Let’s go to R!



Why no p-values in the lme4 summaries?

Recall that p-values in the coefficient summary of fitted linear
models are the probability of getting a test statistic as large (or
larger) if the coefficient was indeed 0.

Also recall that p-values are determined using null reference
distributions. Under the null hypothesis, the test statistic has a
known distribution.

In LME models, the null reference distribution is technically not
known, at least not for unbalanced data. Thus the lme4 authors
elected to not output p-values based on a distribution that is not
actually the distribution of the test statistic.



How do I know if a coefficient is “significant”?

Quick, common-sense way: look at the t value.

If the t value is greater than 2, then the coefficient is likely
significant. In other words, the coefficient estimate is more than 2
standard errors away from 0.

Note:
t value = Estimate / Std. Error

Of course ask yourself if the result is practically significant as well.



How do I know if a coefficient is “significant”?

Another way is to compute 95% confidence intervals using the
confint() function. If the interval contains 0, it is not significant.
Further, confidence intervals give an indication of coefficient size
and variability.

Say your fitted model object is lme1. Two ways to compute
confidence intervals are as follows:

confint(lme1)

computes a likelihood profile and finds the appropriate
cutoffs based on the likelihood ratio test

confint(lme1, method="boot")

parametric bootstrapping (B = 500) with confidence
intervals computed from the bootstrap distribution



But I want p-values!

The lmerTest package provides the kind of p-values SAS provides
(based on Satterthwaite’s approximations). Just load it, run lmer
as usual and call summary on the object.

library(lmerTest)
m <- lmer(dv ~ x1 + (x1 | g), data=df)
summary(m)

A column of p-values is included in the summary output. Again,
they’re approximate.

Let’s go back to R!



Diagnostic plots

Once we fit a LME, we should assess our assumptions:

1. within-group errors (ie, residuals) are normally distributed,
centered at 0 and have constant variance

2. random effects are normally distributed, centered at 0 and have
constant variance

lme4 provides a plot() method to help graphically check the
variance assumptions of residuals. Say you have a fitted model
object named lme1. The basic syntax is as follows:

plot(lme1, form=)

Where the form= argument is an optional formula specifying the
desired type of plot.



Examples of the form= argument

Say we fit the following LME:
lme1 <- lmer(y ~ x + (x | id), data=df)

standardized residuals vs fitted values:
plot(lme1)

standardized residuals versus fitted values by x:
plot(lme1, form = resid(.) ~ fitted(.) | x)

box-plots of residuals by id:
plot(lme1, form = id ~ resid(.))



Diagnostic plots continued

To check constant variance of random effects:
plot(ranef(lme1))
Note: if only one random effect was fit, this produces a qq plot.

To assess normality of residuals:
qqnorm(resid(lme1))

To assess normality of random effects:
lattice::qqmath(ranef(lme1))



Two other plots of interest

plot predicted random effects for each level of a grouping
factor
lattice::dotplot(ranef(lme1))

Also known as a caterpillar plot. Good for checking if there are
levels of a grouping factor with extremely large or small predicted
random effects.

To assess model fit
plot(lme1, y ~ fitted(.) | id, abline = c(0,1))

Points lying on a diagonal line can provide indication of a good
model fit.

Let’s go back to R!



Making predictions using model

The predict function allows you to make predictions with and
without random effects.

with random effects
predict(lme1)

without random effects; also known as marginal predictions
predict(lme1, re.form=NA)

From the lme4 documentation for predict: “There is no option for
computing standard errors of predictions because it is difficult to
define an efficient method that incorporates uncertainty in the
variance parameters.”

Let’s go back to R!



REML vs. ML

If you look closely at the summary output for a model fit with lme4,
you’ll see the message: Linear mixed model fit by REML.

REML stands for Restricted Maximum-Likelihood. It provides
unbiased estimates for the variance parameters.

By setting REML=FALSE in the lmer() function, we can estimate
parameters using ML, Maximum Likelihood. But the variance
estimates will be biased downwards.

The choice of ML vs REML affects model comparisons.



Model Comparisons
We often compare models to see if a smaller model fits as well as a
larger model.

We can compare models either by hypothesis testing or by selection
criteria (such as AIC or BIC).

When it comes to hypothesis testing, the choice of ML vs REML
estimation is important:

To compare two models fit by REML, each must have the
same fixed effects.

To compare two models fit by ML, one must be nested
within the other.

The function to compare models is anova(). Its default behavior is
to refit the models with ML before comparing. Specify
refit=FALSE to suppress refitting.



Comparing nested models

Say we fit two models:
lme1 <- lmer(y ~ x + z + x:z + (1 | g), data=df)
lme2 <- lmer(y ~ x + z + (1 | g), data=df)

The following refits the models with ML and compares them via
Likelihood Ratio hypothesis test:
anova(lme1, lme2)

Notice that lme2 is nested in lme1. That is, lme2 is a special case
of lme1 with interaction coefficient(s) for x:z equal to 0.

The null hypothesis states the models are equal. Rejecting the null
means we prefer the larger model.



Model comparison with AIC

AIC (Akaike Information Criterion) is a criterion-based approach to
model building. It is a measure of “goodness” we try to optimize.
We want to minimize AIC.

To see AIC:
extractAIC(lme1)

Among several models, the one with lower AIC is usually preferred.
This approach requires no hypothesis testing, involves no p-values,
and doesn’t care whether you used REML or ML.

Is it better than hypothesis testing? That’s up to you. Whatever you
do, expect to do some experimentation and iteration to find better
models. Also expect to use a great deal of subjective judgment.



Comparing models with different random effects

Random effect parameters are measures of variances. Variance is
greater than or equal to 0.

When testing whether or not to include a random effect in a model,
we’re testing that its variance is 0. In that case our hypothesis test
involves values lying on the boundary of the parameter space.

The result is that the standard hypothesis test (ie, a likelihood ratio
test) is conservative. The p-value is too high.

If you have a small p-value (say < 0.001), that’s not a problem.

If you have a p-value close to significance, (say about 0.10) you may
want to consider calculating a corrected p-value using a mixture of
chi-square distributions.



A mixture of chi-square distributions

A likelihood ratio test (LRT) statistic has a chi-square distribution
with degrees of freedom equal to the difference in parameters
between two models.

Let’s say our LRT is on 2 degrees of freedom. The null distribution
of this test statistic is NOT a chi-square with 2 degrees of freedom
since our null value (variance = 0) is on the boundary of the
parameter space.

It’s been suggested that a 50:50 mixture, 0.5χ2
df + 0.5χ2

df −1, can
serve as a reference null distribution for computing the p-value. But
this is still only an approximation.

We’ll demonstrate this in the R script. Let’s go!



References

Faraway, J. (2006). Extending the Linear Model with R. Chapman
and Hall/CRC.

Fox, J. & Weisberg, S. (2015). Mixed-Effects Models in R: an
appendix to An R Companion to Applied Regression.

Galecki, A. and Burzykowski T. (2013). Linear Mixed-Effect Models
Using R. Springer.

Pinheiro, J. & Bates, D. (2000). Mixed-Effects Models in S and
S-PLUS. Springer.

West, B., Welch, K., & Galecki, A. (2015) Linear Mixed Models.
Chapman and Hall/CRC.

DRAFT r-sig-mixed-models FAQ:
http://glmm.wikidot.com/faq

http://glmm.wikidot.com/faq


StatLab

Thanks for coming today!

For help and advice with your data analysis, contact the StatLab to
set up an appointment: statlab@virginia.edu

Sign up for more workshops or see past workshops:
http://data.library.virginia.edu/statlab/

Register for the Research Data Services newsletter to stay
up-to-date on StatLab events and resources:
http://data.library.virginia.edu/newsletters/
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