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A cheat sheet for fitting and assessing Linear Mixed-Effect Models using lme4.

Limitations of lme4 (or what it cannot do that nlme can do)

• lme4 does not allow the modeling of heteroscedastic within-group errors. It only fits models with
independent residual errors.

• lme4 only models two types of covariance matrices for random effects: general and diagonal. A general
covariance matrix has separate variances for each random effect and covariances between the random
effects. A diagonal covariance matrix has separate variances for each random effect and no covariance
between random effects.

Features of lme4 (or what it can do that nlme cannot do)

• lme4 provides facilites for modeling generalized linear mixed-effects models. (see glmer)
• lme4 can fit models with crossed random effects.
• lme4 uses efficient computational algorithms based on sparse-matrix representations that make it

suitable for large data sets.

Format of Data

Data should be a data frame in long format. That is, one row per observation of the response variable. For
example:

head(lme4::cake)

## replicate recipe temperature angle temp
## 1 1 A 175 42 175
## 2 1 A 185 46 185
## 3 1 A 195 47 195
## 4 1 A 205 39 205
## 5 1 A 215 53 215
## 6 1 A 225 42 225

Fitting Models

To fit linear mixed-effects model, use the lmer() function. The formular for lmer allows you to express both
fixed and random effects. Random effects are defined in parentheses. Random effects are conditioned on
groups, typically groups with uninteresting or random levels. The conditioning is defined with a pipe: |. Two
pipes, ||, specify fitting a model with a diagonal covariance structure for the random effects. (i.e., assume
multiple random effects are not correlated.)
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Below, dv is the dependent variable, x1 is a predictor, and g is a grouping indicator (for example, subject ID)

Random intercept for each level of g:
lme01 <- lmer(dv ~ x1 + (1 | g), data=df)

Random slope for each level of g:
lme02 <- lmer(dv ~ x1 + (0 + x1 | g), data=df)

Correlated random slope and intercept for each level of g:
lme03 <- lmer(dv ~ x1 + (x1 | g), data=df)

Uncorrelated random slope and intercept for each level of g:
lme04 <- lmer(dv ~ x1 + (x1 || g), data=df)

Multilevel models

For models with nested grouping factors (aka multilevel models), use / to indicate nesting. Below tch is
nested in sch. For example, teachers nested within schools.

Random intercept for each level of sch and for each level of tch in sch :
lme01 <- lmer(dv ~ x1 + (1 | sch/tch), data=df)

Random slope for each level of sch and for each level of tch in sch:
lme02 <- lmer(dv ~ x1 + (0 + x1 | sch/tch), data=df)

Correlated random slope and intercept for each level of sch and for each level of tch in sch:
lme03 <- lmer(dv ~ x1 + (x1 | sch/tch), data=df)

Uncorrelated random slope and intercept for each level of sch and for each level of tch in sch:
lme03 <- lmer(dv ~ x1 + (x1 || sch/tch), data=df)

Extracting and viewing model information

Say your model is saved as object lme01

• summary(lme01) - View summary of lme01
• fixef(lme01) - View estimated fixed effect coefficients
• ranef(lme01) - View predicted random effects
• coef(lme01) - View coefficients for LMM for each group
• VarCorr(lme01) - View estimated variance parameters
• confint(lme01) - Compute confidence intervals on the parameters (cutoffs based on the likelihood

ratio test)
• confint(lme1, method="boot") = Compute confidence intervales on the parameters (computed from

the bootstrap distribution)
• anova(lme1) - Assess significance of fixed-effect factors
• predict(lme1) - View within-group fitted values for lme01
• predict(lme1, re.form=NA) - View population fitted values for lme01

Diagnostic plots

Say we fit the folllowing LMM:
lme1 <- lmer(y ~ x + (x | id), data=df)
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Within-group errors

Plots for examining the assumption that within-group errors are normally distributed, centered at 0, and
have constant variance.

standarized residuals vs fitted values (is the scatter uniform?):
plot(lme1)

standardized residuals versus fitted values by x (is the scatter uniform within groups?):
plot(lme1, form = resid(.) ~ fitted(.) | x)

box-plots of residuals by id (are they centered at 0?):
plot(lme1, form = id ~ resid(.))

To assess normality of residuals (does plot seem to lie on straight line?):
qqnorm(resid(lme1))

Random effects

Plots for examining the assumption that random effects are normally distributed, centered at 0, and have
constant variance.

To check constant variance of random effects (is the scatter uniform?):
plot(ranef(lme1))

To assess normality of random effects (does plot seem to lie on straight line?):
lattice::qqmath(ranef(lmeEng2))

Model fit

observed versus fitted values by id (check fit of model):
plot(lme1, y ~ fitted(.) | id)

Comparing models

When it comes to hypothesis testing, the choice of ML vs REML estimation is important:

• To compare two models fit by REML, each must have the same fixed effects.
• To compare two models fit by ML, one must be nested within the other.

In lmer, REML is the default. Set REML=FALSE to use ML estimation.

Comparing nested models

Say we fit two models:
lme1 <- lmer(y ~ x + z + x:z + (1 | g), data=df)
lme2 <- lmer(y ~ x + z + (1 | g), data=df)

The following refits the models with ML and compares them via hypothesis test:
anova(lme1, lme2)

To supress refitting with ML (only do this if both models have same fixed effects): anova(lme1, lme2,
refit = FALSE)
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Comparing models with different random effects

The typical test is whether or not a random effect is necessary. This means testing if the variance of a random
effect is 0. But variances are positive and 0 is at the boundary of the range of possible values. The result
is that the standard hypothesis test (ie, a likelihood ratio test) is conservative. The p-value is too high. If
you have a small p-value (say < 0.001), that’s not a problem. If you have a p-value close to significance,
(say about 0.10) you may want to consider calculating a corrected p-value using a mixture of chi-square
distributions.

A likelihood ratio test (LRT) statistic has a chi-square distribution with degrees of freedom equal to the
difference in parameters between two models. Let’s say our LRT is on 2 degrees of freedom. The null
distribution of this test statistic is NOT a chi-square with 2 degrees of freedom since our null value (variance
= 0) is on the boundary of the parameter space. It’s been suggested that a 50:50 mixture, 0.5χ2

df + 0.5χ2
df−1,

can serve as a reference null distribution for computing the p-value. But this is still only an approximation.

Example:
Say we fit two models:

lmm1 <- lmer(wt ~ weeks + treat + (1 | subject), data=ratdrink)
lmm2 <- lmer(wt ~ treat + weeks + (weeks | subject), data=ratdrink)

Is the weeks random effect necessary?

aout <- na.omit(anova(lmm1, lmm2, refit = FALSE)) # drop NAs

# function for 50:50 mixture
pvalMix <- function(stat,df){

0.5*pchisq(stat, df, lower.tail = FALSE) +
0.5*pchisq(stat, df-1, lower.tail = FALSE)

}

pvalMix(aout$Chisq, aout$‘Chi Df‘)
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