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Traditional Statistical Inference

To estimate the mean of a population:

I Take a random sample from the population
I Calculate the mean of the sample to estimate population mean
I Assess variability of sample mean by calculating standard error:

s√
n , where s is the standard deviation of the sample

The standard error gives us an idea of how accurate our estimate is.

Two items of note about the standard error:

1. the concise formula
2. it assumes the distribution of the mean is normal



Illustration of Sampling Distribution of mean
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What about other statistics?

For example, median, trimmed mean, ratio, correlation, standard
deviation, error rate, . . .

Sample means are essentially the only statistic with an
easy-to-obtain standard error formula.

Deriving standard error formulas for other statistics can be tedious
or even impossible.

Derivation of standard error formulas also requires making (possibly
incorrect) assumptions about the shape of the sampling distribution.



Sampling Distribution of Median
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Sampling distribution is not normally distributed. How do we calculate standard error?
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Introducing Resampling Methods

Replace complicated or inaccurate approximations with computer
simulations. Also known as “Bootstrapping Methods”.

I Use computer to resample from original random sample to
create replicate datasets (bootstrap samples)

I Calculate statistic of interest for each replicate dataset
(bootstrap replications)

I Summarize bootstrap replications (example: take standard
deviation to estimate standard error)

Resampling methods can assess other accuracy measures such as
bias, prediction errors, and confidence intervals.



Example of Bootstrap Sample

1. resample with replacement
2. resample the same amount as original data

Example using R:

# original sample data (n=10)
myData <- c(18,18,29,20,11,12,16,25,24,21)
# resample data (n=10)
sample(myData, replace=TRUE)

## [1] 29 29 29 11 20 21 18 12 24 21



Example of Bootstrap Replication

Calculate statistic of interest for each bootstrap sample.

# median of original sample
median(myData)

## [1] 19

# median of resample
median(sample(myData, replace=TRUE))

## [1] 20.5

We want to do this at least 200 times; in practice we use 999 or
more.



Example of 200 Bootstrap Replications

# resample data 200 times, take median each time
bout <- replicate(200,

median(sample(myData, replace=T)))
# bootstrap estimate of standard error:
sd(bout)

## [1] 2.231856

Note we’ll get a slightly different answer each time we do this.

This was a toy example. We’ll use the boot package in R for formal
resampling procedures.



Sampling Distribution vs. Bootstrap Distribution
Simulated Sampling Distribution
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Limitations of the Bootstrap

The bootstrap requires that the sample serve as a surrogate for the
population.

The bootstrap will fail if:

I the original sample is not random
I the original sample is biased
I the sample objects are not independent of one another

Again, the original sample must be representative of the population!



Bootstrap Algorithm for Estimating Standard Errors

1. Select B independent bootstrap samples x∗1, x∗2, · · · , x∗B each
consisting of n data values drawn with replacement from the
original data set

2. Evaluate the bootstrap replication corresponding to each
bootstrap sample,

θ̂∗(b) = s(x∗b) b = 1, 2, · · · ,B

3. Estimate the standard error by the sample standard deviation
of the B replications:

ŝeB =

√√√√ B∑
b=1

[θ̂∗(b)− θ̂∗(·)]2/(B − 1)

where θ̂∗(·) =
∑B

b=1 θ̂
∗(b)/B



Implementing Bootstrap Algorithms in R

Use the boot package.

I Comes with base R installation.
I Returns a convenient boot object with associated print and

plot methods
I preserves bootstrap replicates
I allows easy calculation of confidence intervals
I implements variants on the bootstrap (stratified sampling, time

series, censored data)

One catch: user must supply a function.

Let’s go to R.



Bias

Another useful measure of statistical accuracy is Bias.

Bias is the difference between the expectation of an estimator θ̂ and
the quantity θ being estimated.

Large bias is almost always undesirable.



Bootstrap Estimate of Bias

The bootstrap estimate of bias is

b̂iasB = θ̂∗(·)− θ̂

where θ̂∗(·) =
∑B

b=1 θ̂
∗(b)/B

In other words, take the mean of the bootstrap replications and
subtract the original estimate.

As a rule of thumb, bias less than 0.25 standard errors can be
ignored. (|b̂ias/ŝe| < 0.25)

Large bias may be an indication that your statistic is not an
appropriate estimator of the population parameter.

Let’s go to R.



The Jackknife

The jackknife, first proposed in the 1950’s, is the original
computer-based method for estimating biases and standard errors.

The jackknife focuses on the samples that leave out one observation
at a time:

x(i) = (x1, x2, ...xi−1, xi+1, ...xn)

The ith jackknife sample consists of the data set with the ith
observation removed. For example, x(1) is the data set with the first
observation removed.

θ̂(i) is the ith jackknife replication of θ̂. θ̂(1) is the jackknife
estimate with the first observation removed.



The Jackknife Estimates of Bias and Standard Error

The jackknife estimate of bias:

b̂ias jack = (n − 1)(θ̂(·) − θ̂)

where θ̂(·) =
∑n

i=1 θ̂(i)/n.

The jackknife estimate of standard error:

ŝejack =

√
n − 1
n

∑
(θ̂(i) − θ̂(·))2

The jackknife provides a simple approximation to the bootstrap for
estimation of bias and standard errors.

Let’s go to R.



The Jackknife-after-Bootstrap Plot

A common use of the jackknife is for bootstrap diagnostics.

The jackknife-after-bootstrap plot looks at bootstrap samples in
which the ith point did not appear.

The plot shows the sensitivity of the statistic and of the percentiles
of its bootstrapped distribution to deletion of individual
observations.

Centered quantiles are generated for all jackknife samples and
plotted against standardized jackknife influence values:

ljack,j = (n − 1)(θ̂(·) − θ̂(i))/
√

(var(θ̂(i))

R Syntax: jack.after.boot(boot.object) or
plot(boot.object, jack=TRUE)



The Jackknife-after-Bootstrap Plot - Example
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Let’s go to R.



Confidence Intervals

Standard errors are often used to assign approximate confidence
intervals to a parameter of interest.

For example, given a parameter estimate θ̂ and an estimated
standard error ŝe, the usual 95% confidence interval for θ is

θ̂ ± 1.96 · ŝe

This gives us a best guess for θ and how far in error that guess
might be (assuming a symmetric distribution).



Symmetric versus Asymmetric Distributions

Asymmetric (requires transformation)

Standard CI not accurate
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Bootstrap Confidence Intervals

A goal of bootstrap methods is to produce dependable confidence
intervals regardless of the distribution shape.

I match classic confidence intervals when such intervals are
appropriate

I provide accurate coverage without transforming data

We’ll look at two types:

1. Percentile
2. BCa



The Percentile Interval

How it works: use percentiles of the bootstrap histogram to define
confidence limits.

Example: For a 95% percentile interval, the lower bound is the 2.5%
percentile and the upper bound the 97.5% percentile.

If the bootstrap distribution is roughly normal, then the classic
(standard normal) and percentile intervals will nearly agree.

The percentile method provides good coverage for asymmetric
distributions and doesn’t require transforming data.

# R code
boot.ci(boot.out, conf = 0.95, type = "perc")



The Percentile Interval - Example

Asymmetric bootstrap histogram

red lines = classic CI interval; blue lines = percentile interval
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The BCa Interval

An improved version of the percentile method. Stands for
Bias-corrected and accelerated.

Provides better coverage than the percentile method, automatically
corrects for bias in the point estimate, and is preferred in practice.

More difficult to explain than the percentile interval, but not much
more difficult to calculate.

# R code
boot.ci(boot.out, conf = 0.95, type = "bca")



The BCa Interval - Example

Asymmetric bootstrap histogram

red lines = classic CI interval; blue lines = percentile interval; green lines = bca interval
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The BCa method

The BCa interval endpoints are also given by percentiles of the
bootstrap distribution, but the percentiles are computed using a
sophisticated method.

BCa : (θ̂∗(α1), θ̂∗(α2))

where
α1 = Φ(ẑ0 + ẑ0 + zα

1− â(ẑ0 + zα))

α2 is same as α1 except 1− α replaces α.

â is the acceleration and ẑ0 is the bias-correction.



The BCa method - continued

I Acceleration refers to the rate of change of the SE of θ̂ with
respect to θ.

I Bias refers to proportion of bootstrap replications less than θ̂.

The formulas for the acceleration and the bias-correction are
complicated. See Efron, B. (1987) Better bootstrap confidence
intervals (with Discussion). Journal of the American Statistical
Association, 82, 171-200.

Let’s go to R.



Bootstrapping Regressions

We can bootstrap standard errors of regression coefficients. Two
ways:

1. Case resampling: select R bootstrap samples of the data
(i.e. the rows) and fit a model to each sample.

2. Residual resampling: fit a model to original data set and select
R bootstrap samples of residuals to create new responses. We
resample residuals and add to fitted reponse values matched to
original corresponding observed predictors.

Bootstrapping regressions makes sense for models fit with methods
other than least-squares.



Example of Case Resampling
# cars: speed of cars and the distances taken to stop
head(cars, n=4)

## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22

s <- sample(nrow(cars), replace=TRUE)
cars[s[1:4],]

## speed dist
## 28 16 40
## 5 8 16
## 30 17 40
## 39 20 32



Example of Residual Resampling

mod <- lm(dist ~ speed, data = cars) # fit model
rr <- resid(mod)[s] # resample residuals
cbind(cars$speed[1:4],fitted(mod)[1:4] + rr[1:4])

## [,1] [,2]
## 1 4 -7.1889051
## 2 4 0.2703650
## 3 7 0.6759124
## 4 7 -19.1213139



Case Resampling vs. Residual Resampling

If predictors are fixed (not random) values, may make more sense to
use residual resampling.

Residual resampling enforces the strong assumption that errors are
identically distributed.

Case resampling is less sensitive to assumptions, therefore it may be
preferable in some cases.

The car package provides a handy function for bootstrapping
regression models: Boot

Boot(model, R=1000, method="case")
Boot(model, R=1000, method="residual")

Let’s go to R.



Cross-Validation

Cross-validation is a resampling method for estimating prediction
error.

Prediction error measures how well a model works.

Assessing this with data used to build model leads to
underestimating error rate.

However we don’t usually have new data to test the model.

To get around this, cross-validation uses part of the available data
to fit the model and a different part to test it.



How Cross-Validation Works

1. Randomly split data into K roughly equal-sized parts.
(Typically K = 5 or 10)

2. Hold out the kth part and fit the model with the other K − 1
parts.

3. Calculate the prediction error of the fitted model using the kth
part.

4. Do the above for k = 1, 2, . . .K and combine the K estimates
of prediction error for regression and classification, respectively:

I CV(k) = 1
k

∑k
i=1 MSEi where MSEi = 1

ni

∑n
i=1(yi − ŷi )2 (Mean

Square Error)
I CV(k) = 1

k
∑k

i=1 Erri where Erri = 1
ni

∑n
i=1 I(yi 6= ŷi )

(Classification Error Rate)



Cross-Validation Notes

When K = n we call this “leave-one-out” cross-validation (LOOCV).

Using K = 5 or K = 10 often gives more accurate estimates of
prediction error and requires less computation.

The boot package provides the cv.glm function to calculate K-fold
cross-validation prediction error, which requires fitting a model using
glm.

Cross validation also works for more complex modeling methods.

Let’s go to R.
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StatLab

Thanks for coming today!

For help and advice with your data analysis, contact the StatLab to
set up an appointment: statlab@virginia.edu

Sign up for more workshops or see past workshops:
http://data.library.virginia.edu/statlab/

Register for the Research Data Services newsletter to stay
up-to-date on StatLab events and resources:
http://data.library.virginia.edu/newsletters/
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