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Spatial analysis is statistically and substantively important for 
macrolevel criminological inquiry. Using county-level data for the 
decennial years in the 1960 to 1990 time period, we reexamine the 
impact of conventional structural covariates on homicide rates and 
explicitly model spatial effects. Important findings are: (1)  homicide is 
strongly clustered in space; (2) this clustering cannot be completely 
explained by common measures of the structural similarity of neigh- 
boring counties; (3) noteworthy regional differences are observed in the 
effects of structural covariates on homicide rates; and (4) evidence con- 
sistent with a diffusion process for homicide is observed in the South 
throughout the 1960-1990 period. 

One of the more important developments in quantitative criminological 
research over the course of recent decades has been the application of 
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multivariate statistical techniques to explain macrolevel variation in homi- 
cide rates. Informed by influential sociological theories of crime, espe- 
cially anomiehtrain theory, social disorganization theory, and opportunity 
theory, researchers have modeled the effects of a wide range of indicators 
of structural conditions on homicide rates for varying types of territorial 
units. The results of this research have sometimes been contradictory. 
However, in a widely cited article that has become a classic, Land et al. 
(1990) argue that much of the apparent inconsistency in the literature can 
be accounted for by the problem of multicollinearity (see also Parker et 
al., 1999). Commonly used indicators of structural conditions are often 
highly intercorrelated, which makes statistical estimation unreliable and 
renders inferences about independent effects susceptible to the “partialing 
fallacy.” To avoid these problems, Land et al. combine correlated struc- 
tural variables into composite measures and report that in properly speci- 
fied models, the structural covariates of homicide are reasonably 
“invariant” across time and space. The most robust structural predictors 
to emerge in Land et al.3 analyses are measures of resource deprivation/ 
affluence, population structure (size/density), and family disruption 
(divorce rates). 

Since the publication of the path-breaking work by Land et al., criminol- 
ogists have devoted growing attention to the spatial distribution of homi- 
cide and criminal violence more generally (Anselin et al., 2000). Spatial 
analyses are important for both statistical and substantive reasons. Statis- 
tically, if spatial processes operate and are not accounted for, inference 
will be inaccurate and estimates of the effects of independent variables 
may be biased. Explicit modeling of spatial effects is thus important in any 
effort to assess “invariance” in the structural covariates of homicide. 

In addition, spatial patterns can be of considerable substantive impor- 
tance. Causal processes do  not necessarily operate identically in all places, 
and spatial analysis can reveal subareas of geography in which the effects 
of predictor variables differ. In addition, spatial effects can be suggestive 
of “diffusion” associated with the phenomenon under investigation. 
Research has revealed that a wide range of social behavior can be under- 
stood with reference to diffusion processes, such as lynchings, fertility, and 
church attendance (Deane et al., 1998; Land and Deane, 1992; Land et al., 
1991; Tolnay, 1995; Tolnay et al., 1996). Moreover, the theoretical possi- 
bility that criminal violence may spread via a diffusion process has long 
been recognized in the public health literature (Hollinger et al., 1987; Kel- 
lerman, 1996), and recent empirical work on homicide has offered evi- 
dence generally supportive of the diffusion perspective (Cohen and Tita, 
1999; Cork, 1999; Messner et al., 1999). 

The purpose of the present paper is to apply recently developed tech- 
niques of spatial analysis to explain intercounty variation in homicide rates 
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at four time points in a comparative statics fashion-the decennial years in 
the 1960-1990 period. Using the Land et al. specification as our baseline 
model, we reassess the robustness of the structural covariates of homicide 
with rigorous controls for spatial processes. In doing so, we estimate mod- 
els of spatial patterning that are consistent with potential diffusion 
processes. 

We begin by explaining important concepts and theoretical processes 
relevant to structural invariance. Then, after describing data sources and 
methods, we conduct an Exploratory Spatial Data Analysis (ESDA) 
(Anselin, 1999a). ESDA is a critical first step for visualizing patterns in 
the data, identifying spatial clusters and spatial outliers, and diagnosing 
possible misspecification in analytic models. The results of the ESDA 
inform our multivariate analyses, wherein we assess the effects of struc- 
tural variables and formally model spatial processes. 

CONCEPTUAL AND THEORETICAL FRAMEWORK 
FOR SPATIAL ANALYSIS 

The first step in a spatial analysis is to test the null hypothesis of spatial 
randomness against the alternative of spatial autocorrelation. Spatial 
autocorrelation refers to a situation in which values on a variable of inter- 
est are systematically related to geographic location. We illustrate such a 
situation in Figure 1 by the graph labeled “Univariate Spatial Autocorrela- 
tion.” This model depicts two adjacent counties, where yi and yj indicate 
the homicide rate of each. In the graph, a two-headed arrow is used to 
reflect the “simultaneity” inherent in spatial autocorrelation. This is 
unlike serial correlation in the time domain, in which the underlying pro- 
cess is sequential.1 In this model, an association between homicide rates is 
represented without any inference about a causal process generating the 
association. Formally, we have 

Cov[yi,yj] f 0, (1)  
for neighboring i, j. Based on the findings in Messner et al. (1999), our 
initial hypothesis is that county-level homicide rates will exhibit statisti- 
cally significant and positive spatial autocorrelation, suggesting that simi- 
lar homicide rates cluster in space. 

Assuming that spatial randomness is rejected, the next question to be 

In this approach, geographically proximate homicide rates are reciprocally 
related. The estimation of such effects is analogous to that of nonrecursive models 
(Land and Deane, 1992). An alternative to simultaneous estimation is the conditional 
approach, in which the observations at neighboring locations are given. This is more 
appropriate when the main goal is spatial interpolation. The differences between the 
simultaneous model and the conditional model are discussed in detail in Cressie (1993). 

1. 
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addressed concerns the processes generating the observed spatial cluster- 
ing. We begin by specifying a regression model of the homicide rates yi on 
structural factors observed at location i and a stochastic error term E ~ ,  or, 

yi = Z k  X k i b  + Ei, (2) 
where each x k i  is an element in a 1 x K matrix row vector of covariates and 
P k  is the corresponding element in a K x 1 vector of regression coefficients. 
As noted, the covariates for our baseline model are the structural variables 
included in the Land et al. specification. 

If homicide rates are determined solely by the structural factors 
included in the model (the xk in Equation 2), there should be no spatial 
patterning of homicide beyond that created by sociodemographic similari- 
ties of geographically proximate counties. A purely structural interpreta- 
tion thus implies the absence of residual spatial autocorrelation (assuming 
a well-specified model of structural determinants). In other words, no 
remaining spatial dependence should be found once the structural similar- 
ity of neighboring counties has been explicitly controlled for, or, E[E~.E~] = 
0 for neighboring i, j. This situation is illustrated in the graph labeled 
“Structural Similarity” in Figure 1. This model suggests that the spatial 
relationship between yj and yi will become nonsignificant once x k  are 
included in the model. 

In practice, the adequacy of the “pure” structural model is assessed by 
means of specification tests for spatial autocorrelation based on the least- 
squares residuals. In an analysis of county-level homicide rates for 1980 
using a model similar to the Land et al. baseline, Kposowa and Breault 
(1993) find no evidence of residual spatial autocorrelation based on 
Moran’s I test statistic. However, from their paper, it is not possible to 
detect how the test was applied and, specifically, what alternative was 
employed for the neighbor structure (spatial weights) in the tests (see the 
methods section below). Also, this contrasts with our previous findings of 
strong spatial effects noted above. We accordingly hypothesize that the 
structural model will be insufficient to explain the spatial pattern or, in 
other words, that there will be statistically significant residual spatial 
autocorrelation. 

Assuming that residual spatial autocorrelation is observed, the next task 
is to select the proper alternative specification. Different approaches to 
modeling spatial dependence have been proposed in past research. In the 
early sociological literature, Doreian (1980, 1982) introduces the distinc- 
tion between a spatial “effect” and a spatial “disturbance” model (see also 
Land and Deane, 1992). In the former, spatial dependence is introduced 
as an additional covariate in the model, a so-called spatial lag, or a 
weighted average of values for the dependent variable in “neighboring” 
locations. In a spatial “disturbance” model, the spatial dependence is 
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incorporated in the regression error term. Spatial dependence in the form 
of spatial “effects” is suggestive of a possible diffusion process-events in 
one place predict an increased likelihood of similar events in neighboring 
places, net of the effect of structural covariates, whereas spatial depen- 
dence in the form of spatial “disturbance” is indicative of omitted (spa- 
tially correlated) covariates that if left unattended would affect inference. 
Although methods for distinguishing between these two sources of depen- 
dence have long been available (Anselin, 1988; Doreian, 1980,1982), they 
have been almost universally ignored in substantive applications in socio- 
logical and criminological research. Instead, spatial dependence emerging 
from either source has typically been identified with a spatial “effect” 
model. 

In this paper, we preserve the important distinction between the sources 
of spatial dependence, but we use slightly different terminology. Follow- 
ing Anselin (1988), “spatial dependence” is used as a general term to refer 
to either a spatial ‘‘lag’’ model (the spatial “effect” model discussed above) 
or a spatial “error” model (the spatial “disturbance” model from above). 

In addition to dependence, we also consider “spatial heterogeneity” as a 
spatial effect. Spatial heterogeneity refers to a situation in which coeffi- 
cients or error patterns vary systematically across geographic areas. From 
a practical standpoint, it is difficult to distinguish spatial dependence from 
spatial heterogeneity based on regression residuals because all diagnostics 
have power against both forms of misspecification (Anselin and Florax, 
19%). It is therefore important to consider both as potential alternative 
models and to carry out a specification search that controls for spatial het- 
erogeneity while testing for spatial dependence, and vice versa. 

Relating the issue of spatial heterogeneity more directly to the substan- 
tive purpose at hand, the Land et al. baseline model, similar to other com- 
monly used models in homicide research, includes an indicator variable for 
the South.2 A significant coefficient for this variable suggests a ‘‘level’’ 
shift in homicide rates across regions. The analysis of spatial heterogene- 
ity considered in this paper extends this notion to allow for a possible 
structural difference in the regression relationship between geographic 
regions.3 

If spatial dependence persists even in the presence of controls for spatial 

2. The theoretical rationale for including a variable for the South in regression 
models of homicide rates derives from the thesis of a Southern “culture of violence.” 
See Hawley and Messner (1989) for a general review and Nisbett and Cohen (1996) for 
a recent formulation. 

3. In recent, nonspatial OLS analyses, Parker and Pruitt (2000) report differences 
in the structural determinants of city homicide rates across Southern, Western, and 
other regions. A formal assessment of this form of spatial heterogeneity is an important 
task for future research. 
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heterogeneity, the next step is to contrast a spatial error model and a spa- 
tial lag model. The spatial error model evaluates the extent to which the 
clustering of homicide rates not explained by measured independent vari- 
ables can be accounted for with reference to the clustering of error terms. 
In this sense, it captures the spatial influence of unmeasured independent 
variables. This situation is represented in the graph labeled “Spatial Error 
Effects” in Figure 1. A satisfactory spatial error model implies that it is 
unnecessary to posit distinctive effects of the lagged dependent variable. 
The observed spatial clustering in homicide rates is accounted for simply 
by the geographic patterning of measured and unmeasured independent 
variables. 

The spatial lag model, in contrast, incorporates the spatial influence of 
unmeasured independent variables but also stipulates an additional effect 
of neighbors’ homicide rates, i.e., the lagged dependent variable. This is 
the model most compatible with common notions of diffusion processes 
because it implies an influence of neighbors’ homicide rates that is not 
simply an artifact of measured or unmeasured independent variables. 
Rather, homicide events in one place actually increase the likelihood of 
homicides in nearby locales. This situation is depicted in the “Spatial Lag 
Effects” graph in Figure 1. The influence of homicide in neighboring 
counties is represented by a dashed arrow in the graph for technical rea- 
sons explained in the “Methods” section. 

It is important to recognize that these models for spatial lag and spatial 
error processes are designed to yield indirect evidence of diffusion in 
cross-sectional data. However, any diffusion process ultimately requires 
“vectors of transmission,” i.e., identifiable mechanisms through which 
events in a given place at a given time influence events in another place at 
a later time. The spatial lag model, as such, is not able to discover these 
mechanisms.“ Rather, it depicts a spatial imprint at a given instant of time 
that would be expected to emerge if the phenomenon under investigation 
were to be characterized by a diffusion process. The observation of spatial 
effects thus indicates that further inquiry into diffusion is warranted, 
whereas the failure to observe such effects implies that such inquiry is 
likely to be unfruitful. 

In sum, our spatial analyses begin with an examination of the spatial 

4. Theorizing about the precise nature of diffusion mechanisms is beyond the 
scope of the present paper. Loftin (1986) offers a provocative discussion of how serious 
assaultive violence may be usefully viewed as a “contagious social process” spread 
through subcultural dynamics. See also Cohen and Tita (1999) for insightful distinc- 
tions between different kinds of diffusion mechanisms that may be applicable to homi- 
cide, and Blumstein (1995) for an analysis of the potential role of weapons in the 
diffusion of criminal violence. 
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clustering of county-level homicide rates and a search for distinctive spa- 
tial regimes in the data. This exploratory analysis paves the way for mul- 
tivariate modeling. In our multivariate models, we estimate the effects on 
homicide rates of structural variables with adjustments for spatial depen- 
dence and spatial heterogeneity. We then assess the extent to which any 
observed spatial dependence is best described with reference to the effects 
of unmeasured predictor variables (the spatial error model) or with refer- 
ence to the influence of homicides in neighboring counties (the spatial lag 
model). Evidence consistent with the latter would be suggestive of possi- 
ble diffusion processes in the generation of homicide rates. 

DATA 
The data for the homicide rates are constructed from the National 

Center for Health Statistics (NCHS) mortality files (various years) and the 
Centers for Disease Control and Prevention (CDC) WONDER system. 
To avoid extreme heterogeneity, the rates are smoothed by taking a three- 
year average of the county homicide count centered on each decennial 
census year of the 1960-1990 period (e.g., 1959-1961). These averages are 
divided by the single-year census population figure (e.g., 1960). Homicide 
counts are obtained by aggregating individual homicides to the decedent’s 
county of residence. County groups were generated following the Horan 
and Hargis (1995) county template so that geographic boundaries are con- 
sistent throughout the time period. 

The independent variables are county analogues of the measures used 
by Land et al. (1990). As with Land et al. (1990), resource deprivation and 
population structure are represented by principal components indexes. 
The resource deprivation component consists of percent black, median 
family income (logged), a Gini index of family income inequality, percent 
of families below poverty, and the percent of families that are female 
headed. The population structure component comprises population size 
(logged) and population density (logged). The models also include 
median age, the unemployment rate, percent divorced, and a Southern 
dummy variable based on census definitions (16 states and the District of 
Columbia).s These variables come from the USA Counties 1996 CD- 
ROM and the County and City Data Book Consolidated File, 1947-1977. 

We recognize that counties are arbitrary units of analysis, which raises a 
form of the ecological fallacy problem (King, 1997). The selection of a 

5. Data availability requires minor modifications in model specification. For 
1960, the variable for family poverty is the percent of families who earn less than $3,000, 
and the variable for family structure is the percent of families that are single parent. 
Median age is substituted for percent ages 15-29 as the indicator of age structure for all 
years. 
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spatial scale of analysis has important ramifications for the treatment of 
spatial effects. Counties may be too large an areal unit for analysis, espe- 
cially for detecting the diffusion of homicide, and the unobserved hetero- 
geneity may create an ecological fallacy. The problem of scale could also 
work in the opposite direction. If homicide is really a regional phenome- 
non, slicing the regions of the United States into counties will produce 
spatial autocorrelation, not because of spatial interaction, but because 
counties in the same region experience a common regional cause of homi- 
cide. In this case, counties are too small an areal unit. 

The selection of the unit of analysis should ideally be determined by 
theoretical considerations, but in practice, data availability imposes severe 
constraints. We use counties in the present research for a number of rea- 
sons. Foremost among these is that the sample size is greatly augmented, 
relative to using states or MSAs.6 Also, the county is the smallest spatial 
unit of analysis for which the necessary data for estimating our models are 
available for the entire time period under investigation. Furthermore, a 
county-level analysis can encompass the entire contiguous U.S., thus 
including not only urban areas, but also rural communities. Finally, we are 
able to build on precedents in the literature that used counties as units of 
analysis in the study of homicide and explicitly assess the role of spatial 
effects (DeFronzo and Hannon, 1998; Kposowa and Breault, 1993; 
Kposowa et al., 1995; U.S. Department of Health and Human Services, 
1997).7 

METHODOLOGY 

As noted, the methodology employed in this paper uses a combination 
of exploratory spatial data analysis and spatial econometric techniques. In 
earlier work, Messner et al. (1999) report evidence of strong positive spa- 
tial autocorrelation of homicide rates for a subset of U.S. counties, as well 
as evidence indicating that some of the relations between homicide and its 
covariates are not stable across space. These findings suggest that the 
application of techniques of ESDA is useful in the search for spatial 
regimes (Anselin, 1999a; Cook et al., 1996). Insights gained in this explor- 
atory phase are incorporated in the spatial structure of the model, where 

6. Although Land et al. limit their study to state-, metropolitan area-, and city- 
level ecological aggregation, they acknowledge that a general theory of how structural 
covariates affect homicide rates should be applicable at other ecological levels, includ- 
ing counties (see Land et al., 1990: fn.13). 

7. Previous studies did not include spatial effects or found that they were not 
warranted. 
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spatial dependence is explicitly taken into account by applying specifica- 
tion tests and estimation methods from spatial econometrics and spatial 
statistics (Anselin, 1988; Anselin and Bera, 1998; Cressie, 1993). 

Thus, the first step in our assessment of structural invariance consists of 
exploratory spatial data analysis of the global and local patterns of spatial 
autocorrelation in the homicide rates. Global autocorrelation is assessed 
by means of Moran’s I statistic (see Appendix 1). A positive and signifi- 
cant Moran’s I indicates clustering in space of similar homicide rates. 

Local spatial autocorrelation is assessed by means of a local Moran sta- 
tistic, which indicates for each location the extent to which the pattern of 
the value at that location and the values at neighboring locations is com- 
patible with spatial randomness. Rejection of this null hypothesis indi- 
cates local clustering of high (high surrounded by high) or low (low 
surrounded by low) values, or local spatial outliers in the form of high 
values surrounded by low neighbors or low values surrounded by high 
neighbors (see Appendix 1). 

The exploratory phase in the analysis is followed by an ordinary least- 
squares (OLS) regression of county-level homicide rates on the structural 
predictors. The results of OLS regressions are scrutinized for the exis- 
tence of spatial patterns by means of a battery of diagnostics. Spatial het- 
erogeneity is accounted for in a number of ways. First, in the initial 
(nonspatial) specification, we allow the error variance to be different in 
different geographic subgroups of the data (groupwise heteroscedasticity 
following spatial regimes) to assess the sensitivity of the coefficient esti- 
mates and specification tests against spatial dependence. In addition, we 
apply a spatial regime regression, which allows the coefficients to be dif- 
ferent in each regime. This yields a “spatial Chow” test on the stability of 
these coefficients across regimes (Anselin, 1990). Formally, this is similar 
to switching regressions, but where the different coefficient values are 
based on spatial regimes. This is useful for two reasons. First, it allows us 
to explicitly test the spatial structural invariance of regression coefficients. 
This can reveal different social mechanisms by region or different relative 
significance of the covariates in the model. Second, if regional stability is 
rejected, the modeling allows for varying spatial processes to be consid- 
ered in each region. 

Assuming that spatial dependence is observed with controls for spatial 
heterogeneity, we contrast the spatial error and spatial lag models. A spa- 
tial error model is implemented by specifying a spatial stochastic process 
for the error term, which in turn yields the nonzero correlation for the 
neighboring E ~ .  Formally, a spatial autoregressive error process for the 
error terms is 

Ei = h Xj Wij.Ej + UI, (3) 
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where the wij are row elements in a spatial weights matrix, A is a spatial 
autoregressive coefficient, and ui are i.i.d. errors. The weights matrix 
reflects the potential interaction between neighboring locations and zeros 
out pairs of locations for which spatial correlation is ruled out a priori 
(Anselin, 1988). 

To facilitate comparison of the spatial effects model with the spatial lag 
model, it is instructive to consider the spatial error process from (3) in 
matrix form: 

E = AWE + u, (4) 
where the symbols have the same meaning as before, but now represent 
vectors of dimension n x 1 for all observations jointly, and W is an n x n 
spatial weights matrix. Solving this for E and substituting into the regres- 
sion equation yields (in matrix form) 

y = xp + (I - hW)-’u. ( 5 )  
The essence of this expression is that the value of the dependent variable 
for each location is affected by the stochastic errors at all locations 
through the spatial multiplier (I - AW)-’.8 

As explained above, the spatial lag model differs from the spatial error 
model in that it allows for an influence of the dependent variable (homi- 
cides) of neighboring counties above and beyond that reflected in error 
terms. Formally, the spatial lag model is (in matrix notation) 

y = pwy + xp + u, (6) 
with p as the spatial autoregressive parameter and the other notation as 
before. The corresponding “reduced form” of equation (6) is 

y = (I - pW)-’ xp + (I - pW)-’u (7) 
This reduced form illustrates two important points. First, the spatial 

error model ( 5 )  is subsumed by the spatial lag model, although in non- 
nested form.9 Second, the value of y at each location is not only deter- 
mined by xi at that location, but also by the xi at all other locations, 
through the spatial multiplier (I - pW)-’. This is very different from a 
“lag” model in the time domain, which complicates both estimation and 
testing (Anselin and Bera, 1998). 

In the graph of the spatial lag effects in Figure 1, we depict this differ- 
ence in two ways. First, we have a dashed arrow between the y’s, indicat- 
ing the inclusion of yj in the explanation of yi, based on the structural 

8. This only affects the precision of the estimation, because “on average,” the 
stochastic errors disappear. For an extensive discussion, see Anselin and Bera (1998). 

9. This is the case in the sense that Equation 5 cannot be obtained from Equation 
7 by imposing simple zero restrictions on the coefficients. 
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relation in Equation 6 .  We also illustrate the reduced form (7) by includ- 
ing the arrows between the error terms at neighboring locations. In addi- 
tion, we depict the influence of a covariate xj at neighboring locations 
upon yi. 

A crucial concept in these methods is that of a spatial weights matrix (W 
in Equations 4-7), which incorporates the prior structure of dependence 
between spatial units. This is necessary due to insufficient information to 
specify a full matrix of interaction (n x n) from observations in a single 
cross section (n observations). Each row of a spatial weights matrix has 
nonzero elements for the columns that correspond to neighboring units.10 
By convention, the diagonal elements are set to zero, and for ease of inter- 
pretation, the elements of each row are standardized such that they sum to 
one. 

It is important to keep in mind that all analyses are conditional on the 
choice of the spatial weights. In our study, we base the weights on a near- 
est neighbor criterion, using both 5 and 10 nearest neighbors, calculated 
from the distance between county centroids.11 

Technically, an instrumental variables approach is used to estimate the 
spatial lag model, because it properly accounts for the endogeneity of the 
Wy term (Anselin, 1988; Land and Deane, 1992). We follow Kelejian and 
Robinson (1993) in using the spatially lagged explanatory variables (WX) 
as instruments. The spatial error model is estimated by means of the 
recently suggested generalized moments (GM) method of Kelejian and 
Prucha (1999). 

Note that in contrast to the IV procedure for the spatial lag model, the 
GM approach does not provide inference for the spatial autoregressive 
parameter. Hence, this method should only be applied after specification 
tests (on the residuals of an OLS regression) have clearly established that 
the spatial error is the proper alternative. In practice, specification tests 
against a spatial error or spatial lag alternative are based on the Lagrange 

10. The notion of neighbor is perfectly general, and it can be based on geographic 
considerations, such as common boundary or being within a critical distance band, or on 
economic or social distance. For a general discussion of spatial weights, see Anselin 
(1988). Anselin and Bera (1998), Cliff and Ord (1981), and Upton and Fingleton (1985). 
Economic weights are introduced in Case et  al. (1993). 

To the extent that the results of diagnostic tests depend on the spatial weights, 
it is possible that Kposowa and Breault’s (1993) finding of a lack of significant spatial 
autocorrelation is due to the choice of different weights. In what follows, we report the 
results for 10 nearest neighbors and indicate where qualitative differences are found for 
5 nearest neighbors. In the United States, counties have on average 5 to 6 contiguous 
neighbors, so that our selection of 10 yields a ring around each county of roughly the 
first- and second-order contiguous counties. By choosing a fixed number of nearest 
neighbors, we avoid some methodological problems that may result when the number 
of neighbors is allowed to vary. 

11. 
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Multiplier principle (see Appendix 2). All computations are carried out 
by means of the Spacestat software package (Anselin, 1999b). 

RESULTS 

We begin by examining the Global Moran’s I statistics for homicide 
rates in 1960, 1970, 1980, and 1990. The coefficients are .363, .420, .371, 
and .372, respectively; all of which are statistically significant at the .001 
level.12 These results show that as expected, the null hypothesis of spatial 
randomness is rejected for all years under study and provide strong evi- 
dence of a significant spatial pattern. 

Maps 1 to 4 are modified Moran scatterplot maps of the homicide rates 
for 1960, 1970, 1980, and 1990. There is a slight modification in format 
relative to the usual approach, necessitated by the use of black-and-white 
maps. Instead of highlighting four categories, the “High-Low” and “Low- 
High” categories are whited out. The clustering of high homicide rates is 
mostly in the South (as indicated by darker gray shading and the label 
“High-High”). The clustering of low rates is found throughout the North- 
east, Midwest, and parts of the West (as indicated by lighter gray shading 
and the label “LOW-Low”). From these maps, we conclude that consistent 
with the prior literature, the two most important spatial regimes in the 
United States are the Southern and non-Southern regions. These spatial 
regimes will be incorporated into the multivariate analyses that adjust for 
spatial heterogeneity. 

Table 1 presents OLS regression results for the baseline model that 
includes the structural predictors of U.S. county homicide rates for each of 
the four periods under consideration. We find consistent effects for all 
variables, with the exception of percent unemployed. Similar to the find- 
ings in Land et al., resource deprivation, population structure, divorce, and 
Southern location are positively and consistently related to homicide. The 
negative effect of median age supports the notion that it is counties with 
younger populations that have higher homicide rates. The negative coeffi- 
cient for the percent unemployed is counterintuitive but consistent with 
the results of Land et al. (1990). Land et al. (1990) suggest that unemploy- 
ment indicates reduced opportunity for violence (less social activity) once 
resource deprivation is controlled for (see also Cantor and Land, 1985; 
Land et al., 1995). In general, these non-spatial results for counties mirror 
those found in empirical studies for other common macrounits of analysis 
(cities, MSAs, and states). 

12. We assess significance based on a permutation approach with 999 random 
permutations. 
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Table 1. Ordinary Least-Squares Regression of County 
Homicide Rates 1960-1990” 

Independent Variables 
Resource 
Dep./Aff. Comp. 

Pop. Struct. 
Comp. 

Median Age 

Divorce 

Unemployment 

South 

Intercept 

1960 
1.798** 

[0.318] 
(14.571) 

0.359** 
[0.064] 
(3.892) 
-0.231** 
[-0.192] 

[0.205] 

(-11.931) 
1.160** 

(12.233) 
-0.062 
[-0.028] 
(-1.762) 

2.639** 
[0.233] 

(1 1.312) 
8.126** 

( 12.804) 

1970 
2.913** 

[0.396] 

0.812** 

(6.959) 

[ -0.1301 

(19.511) 

[0.11 I ]  

-0.191** 

(-8.394) 
1.264** 

[ 0.1841 
(12.109) 
-0.278** 

[-0.087] 
(-5.562) 

3.589** 
[0.243] 

8.653** 
(1 2.557) 

(1 1.275) 

1980 
3.412** 

[0.500] 
(28.268) 

0.747** 
[0.109] 
(7.315) 
-0.242** 
[-0.137] 
(-9.671) 

1.250** 
[0.266] 

-0.122** 

(-3.965) 

(18.586) 

[-0.0591 

[0.154] 
2.1 13** 

(9.129) 

(9.720) 
8.541 ** 

1990 
3.872** 

[0.583] 
(27.1 33) 

1.353** 
[0.204] 

(13.491) 
-0.101 ** 

[-O.OSS] 

[0.152] 
(1 0.690) 

(-3.691) 
0.583** 

-0.306‘k* 
[-0.141] 
(-7.472) 

2.194** 
[0.165] 
(9.952) 
6.517’k* 

(6.364) 
Adj. R-Squared 
N 

0.295 
3085 

0.360 
3085 

0.431 
3085 

0.43.5 
3085 

Unstandardized regression coefficients, standardized regression coefficients in 
brackets, and t-ratios in parentheses. 
* p I .05: ** p I .01 (two-tailed tests). 

Regression diagnostics, however, reveal a strong presence of both heter- 
oskedasticity and spatial dependence.13 We first consider the potential for 
spatial regimes more closely. Table 2 presents the results for an examina- 
tion of coefficient variation and heteroscedasticity for the Southhon- 
South spatial regimes. The tests include a spatial Chow test on overall 
coefficient stability across regimes, tests for the stability of individual coef- 
ficients, and tests for heteroscedasticity (equality of the error variances by 
spatial regime). The spatial Chow test clearly rejects the null hypothesis of 

13. Heteroscedasticity is indicated by a significant White statistic. All LM statis- 
tics for spatial autocorrelation are highly significant. The use of robust forms of these 
statistics allows for a clear discrimination between alternative models (see Appendix 2 
for technical details). Specifically. the robust LME statistics are 3.50. 8.81, 67.90. and 
28.05 for the respective years, with the latter three being significant at p < .01. The 
robust LML statistics amount to 15.81, 30.78, 0.37, and 4.05, significant with p < .01 for 
the first two years and marginally (p < .05) for the last year. Comparison of these test 
statistics suggests a spatial lag alternative in 1960 and 1970 and a spatial error alterna- 
tive in 1980 and 1990. However, this does not account for the potentially confounding 
effect of spatial heterogeneity, which is examined next. 
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Table 2. Stability of Regression Coefficients by Spatial 
Regime-County Homicide Rates 1960-1990 

1960 1Y70 1Y80 

I. 

11. 

Pop. Struct Comp. 0.1 18 0.286 32.490** 
Median Age 3.480 0.036 7.352** 
Divorce 0.057 11.088** 15.822** 
Unemployment 24.849** 45.870** 12.922** 

111. Heteroscedastic Coefficients: 
Non-south 9.776 16.016 21.750 
South 36.930 54.544 30.451 

IV. Test on Heteroscedasticityh: 
360.392** 328.375** 40.296** 

N ( N  of South) 3085 (1412) 3085 (1412) 3085 (1412) 

Spatial Chow Test on Overall Stability”: 
150.527** 227.468** 162.712** 

Stability of Individual Coefficients (nowSouth versus South)h: 
Resource Dep. Comp. 0.135 0.868 7.303** 

1990 

168.438** 

36.065 * * 
18.758** 
0.982 
0.641 

28.1 50** 

16.209 
34.204 

164.284* * 
3085 (1412) 

* distributed as xz with 6 degrees of freedom. 
distributed as x2 with 1 degree of freedom. 

* p I .05: ** p I .01 (two-tailed tests). 

coefficient stability. Furthermore, the estimates for the heteroscedastic 
coefficients indicate a larger variance in the Southern counties. Substan- 
tively, this implies that the baseline model fits less well in the South. 

A closer examination of the individual tests on coefficient stability 
across regimes suggests that several of the structural characteristics exert 
significantly different effects across regions. Moreover, these patterns 
vary over time. This suggests that the “invariance” of the Land et  al. 
(1990) baseline model of homicide has been overstated. In addition, these 
results highlight the inadequacy of reducing spatial heterogeneity to a 
dummy variable for the South and the need to model regional variation in 
the effects of covariates explicitly. 

Given the strong evidence of distinct spatial regimes in the South and 
non-South, we pursue a disaggregated modeling strategy in the remainder 
of the empirical investigation. Separate models are estimated for each of 
the regions and again scrutinized for the presence of spatial dependence. 
Examination of the residuals in an OLS estimation for the South suggests 
the need for a spatial lag specification in each of the years considered. In 
contrast, the results for the non-South suggest a lag model in 1960, but a 
spatial error model in the subsequent years.14 Tables 3 and 4 present 

14. The OLS results are not reported here, but are available from the authors. 
Both LME and LML statistics are highly significant in all years, suggesting the need to 
use the robust forms of the statistics (see Appendix 2). For the South, the robust LME 
yielded .34, 1.03. 6.11, and 5.76, respectively, and the robust LML 17.06. 38.35. 17.02, 
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Table 3. Spatial Lag Models of Southern Homicide Rates 
1960-1990” 

Independent Variables 1960 1970 1980 1990 
Resource 0.832** 1.792** 3.026** 4.028** 
Dep./Aff. Comp. [0.121] [ 0.21 81 [0.478] [0.602] 

(3.386) (5.820) (1 3.994) (14.814) 

Comp. [ -0.0071 [0.041] [ 0.1 981 [0.209] 
(-0.265) (1.497) (7.637) (8.247) 

Pop. Struct. -0.057 0.401 1.551** 1.747** 

Median Age -0.1 29* * -0.060 -0.150** -0.018 
[ -0.0991 [-0.0391 [-0.0931 [-0.0091 
(-2.942) (-1.378) (-3.736) (-0.368) 

Divorce 0.786** 0.642** 0.775** 0.482** 
[0.092] [0.075] [0.149] [0.097] 
(3.241) (3.060) (6.302) (4.251) 

Unemployment -0.070 -0.353** -0.244** -0.438** 
[-0.026] [-0.0921 [-0.1081 [-0.1911 
(-0.897) (-3.023) (-4.1 45) (-5.928) 

Spatial Lag (p) 0.713** 0.651** 0.182* 0.230** 
[0.379] [0.359] [ 0.1 001 [0.125] 
(6.005) (6.905) (2.431) (3.261) 

Intercept 4.108* 4.153* 9.101** 5.249* 
(2.207) (2.042) (5.364) (2.513) 

Sq. Corr. 0.178 0.239 0.311 0.333 
N 1412 1412 1412 1412 

and t-ratios in parentheses. 
* p 5 0 5 ;  ** p 5 01 (two-tailed tests). 

results for these spatial models for the Southern and non-Southern coun- 
ties, respectively. Table 3 presents spatial lag models for the Southern 
counties for all time points, whereas Table 4 presents a spatial lag model 
for the 1960 non-Southern sample and spatial error models for 1970,1980, 
and 1990. 

Beginning with the results for the South (Table 3), the signs of the coef- 
ficients for structural covariates are generally consistent with those 
observed in nonspatial analyses for the full sample of counties. However, 
there are interesting changes in magnitudes (and significance) over time. 
The resource deprivation component is positively related to homicide 
rates throughout the period, but the strength of the effect steadily 

Unstandardized regression coefficients, standardized regression coefficients in brackets, 

and 7.69, in each year, clearly indicating a lag alternative (although less so in 1990). For 
the non-South, the corresponding robust LME statistics were 0, 3.48. 40.54. and 11.14, 
and robust LML was 3.92, .67. 4.39, and .25. In year 1960, a lag is suggested, whereas 
for the other years, an error process is the suggested alternative. 
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Table 4. Spatial Regression Models of Non-Southern 
Homicide Rates, 1960-1990” 

Independent Variables 1960 
Resource 
Dep./Aff. Comp. 

Pop. Struct. 
Comp. 

Median Age 

Divorce 

Unemployment 

Spatial Lag (p) 

Spatial Error (A)  
Intercept 

~~ 

1.571** 
[0.275] 
(9.395) 
0.386** 

[0.126] 
(5.011) 

[-0.191] 
-0.156** 

(-7.336) 
0.833** 
[0.276] 
(8.552) 
0.079** 
[0.061] 
(2.622) 
0.41 5 * * 
[.197] 

(4.645) 
NI 

4.832** 
(6.544) 

1970 
3.007* * 
[0.389] 

(14.626) 
0.859** 
[0.211] 
(7.795) 

[-0.1631 
(-6.452) 

-0.157** 

1.403** 
[0.359] 

(13.980) 
-0.024 
[-0.0131 
(-0.502) 

NI 

0.243 
6.164** 

(7.309) 

1980 
4.143** 
[0.467] 

(19.837) 
0.290* 
[0.056] 
(2.132) 
-0.304** 
[-0.1971 
(-8.607) 

1.318** 
[0.366] 

(14.560) 
0.008 

(0.196) 
NI 

[0.005] 

0.329 
9.622** 

(7.588) 

1990 
2.875 * * 
[0.405] 

(13.435) 
0.962** 
[0.229] 
(8.299) 

[-0.050] 
-0.066* 

(-2.034) 
0.572** 
[0.239] 
(9.156) 
-0.045 
[-0.0291 
(-0.888) 

NI 

0.268 
3.261** 

(2.621) 

Sq. Corr. 
N 

0.199 0.234 0.348 0.258 
1673 1673 1673 1673 

a Unstandardized regression coefficients, standardized regression coefficients in brackets, 
and t-ratios in parentheses. 
* p 5 .05; ** p I .01 (two-tailed tests). 

increases over time. The population structure variable exhibits nonsignifi- 
cant effects in 1960 and 1970. It is only in the latter years (1980 and 1990) 
that the expected positive effects emerge. Divorce rates are significantly 
related to Southern homicide rates throughout the period, but the effect is 
noticeably weaker in 1990. Unemployment is negatively related to homi- 
cide rates in all years except 1960, whereas median age exhibits signifi- 
cantly negative effects sporadically. 

Table 3 also indicates that the effects of the Southern spatial lags of 
homicide are positive and statistically significant in all time periods.15 
These findings support the claim that homicides in Southern counties 
influence homicides in other counties, consistent with a diffusion interpre- 
tation. Note also, however, that the effects of the spatial lags generally 
weaken over time. An examination of the betas indicates that the spatial 

15. The spatial lag for the 1980 model in Table 3 is not significant when a 5 nearest 
neighbor weights matrix is used instead of a 10 nearest neighbor spatial weights matrix. 
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lags are the strongest predictors of Southern homicide in 1960 and 1970 
but are eclipsed by the structural predictors in 1980 and 1990. 

Turning to the non-South (Table 4), the results for the structural 
covariates are similar to those for all counties in the nonspatial analyses, 
with the exception of the unemployment variable. Resource deprivation, 
divorce, and population structure exhibit significantly positive effects on 
homicide rates, whereas median age yields significantly negative effects. 
The only significant effect for unemployment is in 1960, and it  is positive, 
contrary to the general pattern. 

The results of the spatial analyses are different for the non-South in 
comparison with the South. In every year except 1960, the spatial error 
model provides a better fit than does the spatial lag model. Substantively, 
this implies that for the most part, the residual spatial autocorrelation in 
the non-South can be adequately accounted for in terms of unmeasured 
predictor variables. A diffusion process thus seems unlikely in non-South- 
ern counties over recent decades. 

SUMMARY AND DISCUSSION 

Our analyses yield several noteworthy findings. First, as expected, 
homicide is not randomly distributed in space. Throughout the 1960-1990 
period, county-level homicide rates exhibit appreciable positive spatial 
autocorrelation. Furthermore, our ESDA reveals a distinctive regional 
imprint for this spatial autocorrelation. It is mostly in the South that coun- 
ties have higher than average homicide rates that form statistically signifi- 
cant clusters. These findings suggest that the South and the non-South 
constitute two distinct spatial regimes in the geographic clustering of 
homicide. 

Second, spatial clustering persists even after controlling for the widely 
recognized structural predictors of homicide. Residual spatial autocorre- 
lation is highly significant for all time points under investigation. These 
findings suggest that homicide rates are not generated solely by the inter- 
nal structural factors represented in the baseline regression model. 

Third, in addition to the regional differences in the spatial clustering of 
homicide rates, there are also significant regional differences in the effects 
of structural predictors. Scholars have long speculated on reasons for the 
relatively high homicide rates observed in the South, leading to lively 
debates over the alleged Southern “culture of violence” (Hawley and 
Messner, 1989; Nisbett and Cohen, 1996). However, much less attention 
has been given to the possibility that aspects of Southern culture may con- 
dition the effects of structural determinants of homicide (for an exception, 
see Messner, 1983). An important task for future research is to formulate 
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and test theoretical explanations for why the structural processes underly- 
ing homicide rates may differ in varying regional contexts. 

In addition, future studies could explore the implications of using vary- 
ing definitions of regions. Previous research indicates that dividing the 
South into subregions defined with reference to cultural areas yields 
important variation in levels of homicide that is concealed in more highly 
aggregated analyses (Corzine et  al., 1999; see also Parker and Pruitt, 2000). 
Structural effects and spatial processes may also vary across these more 
refined geographic areas. In any event, our finding of differences in the 
effects of structural variables across regions broadly defined has a key 
methodological implication: Coefficients obtained in macrolevel studies of 
homicide based on samples of units encompassing different regions are 
likely to yield misleading results unless regional interactions are explicitly 
taken into account. 

Finally, after disaggregating the sample into Southern and non-Southern 
counties, we observe enduring spatial dependence. In the South, a spatial 
lag model fits the data well for all decades under investigation. These 
results are consistent with homicide diffusion. We stress, however, that 
much more evidence is required to enhance the credibility of such an 
interpretation. It would be useful, for example, in future research to intro- 
duce an explicit temporal dimension into the analysis and examine the 
extent to which changes over time in homicide rates in the South also fol- 
low a pattern consistent with contagion (cf. Cohen and Tita, 1999). Ulti- 
mately, of course, demonstration of diffusion processes for homicide will 
require the identification and measurement of the precise mechanisms 
involved. Our analyses nevertheless lend credibility to the claim that dif- 
fusion processes have operated within the South over the latter decades of 
the twentieth century. 

In the non-South, in contrast, the spatial patterning of homicide rates is 
more consistent with a spatial error model (at least in the last three 
decades). This implies that homicide rates cluster because of the cluster- 
ing of unmeasured variables. Note that if the Land et al. baseline model 
effectively captures the structural determinants of homicide, the unmea- 
sured variables may reflect cultural factors. This leads to  the somewhat 
ironic suggestion that variation in homicide rates outside of the South may 
partially reflect a non-Southern culture of nonviolence! '6 

16. We deliberately use very guarded language in proposing a possible cultural 
interpretation for the results in the non-South because the unmeasured variables 
reflected in the spatial error model could include structural factors not captured in the 
Land et al. specification. Note, however, that this specification is predicated upon an 
extensive body of empirical literature, and it incorporates a large number of structural 
dimensions through the construction of composite indexes. 
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In sum, our analyses demonstrate striking, substantively meaningful spa- 
tial patterns of homicide at the macrolevel. Homicide researchers should 
attend to these patterns for at least two reasons: Spatial dependence needs 
to be modeled properly to estimate the effects of nonspatial variables, and 
spatial dependence directs attention to potential sites for substantively 
interesting processes, such as diffusion. The application of recently devel- 
oped techniques of spatial econometrics thus offers promising opportuni- 
ties for extending our understanding of the social forces contributing to 
interpersonal violence. 
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Appendix 1. Spatial Autocorrelation Statistics 
The most commonly used univariate statistic against the null hypothesis 

of spatial randomness is Moran’s I (Cliff and Ord, 1981). A significant and 
positive value of this statistic indicates spatial clustering (contagion, spill- 
overs, externalities), whereas a significant and negative value suggests a 
checkerboard pattern of values (competition, repulsion). Formally, 
Moran’s I is I = ZiZj wj(yi-p)(yj-p) / & ( ~ ~ - p ) ~ ,  where wij is an element of a 
row-standardized spatial weights matrix, y is the homicide rate, and p is 
the average homicide rate in the sample. Inference for Moran’s I is based 
on a normalized z-value, obtained by subtracting the expected value and 
dividing by the standard error (for technical details, see Cliff and Ord, 
1981). It should be noted that for Moran’s I to be appropriate, the under- 
lying random variable should have a constant variance. Because homicide 
rates are intrinsically heteroscedastic (due to the different population 
base), indication of spatial autocorrelation that ignores this aspect may be 
spurious (Cressie, 1993; Cressie and Chan, 1989). In our analyses, we  car- 
ried out Moran’s I for the original variates and for a variance-stabilizing 
transformation, but found no qualitative difference between the results. 

Moran’s I can be visualized by means of a so-called Moran scatterplot 
(Anselin, 1996, 1999b), which has Wz on the y-axis and z on the x-axis, 
where z are standardized variates and W is a row-standardized spatial 
weights matrix. The slope of the linear smoother in this plot corresponds 
to the value of Moran’s I. This device allows for the categorization of 
spatial association into four groups, corresponding to the quadrants in the 
graph: high surrounded by high, low surrounded by low (both positive spa- 
tial autocorrelation), and high surrounded by low, low surrounded by high 
(both negative spatial autocorrelation). 

Although Moran’s I is a “global” measure of spatial autocorrelation, 
meaning that it pertains to the complete data set, in exploratory analysis, 
so-called “local” statistics of spatial association may yield more specific 
insights into the presence of clusters and spatial outliers. Introduced in 
Anselin (1995), the Local Moran I statistic is Ii = (zi / Z, z?) Zj wij zj, where, 
z refers to the homicide rate in mean-deviation form. Inference is based 
on a conditional randomization approach (Anselin, 1995). As for the 
global Moran’s I,  variance instability must be accounted for when applying 
this diagnostic to proportions such as homicide rates. 

A combination of the information in a Moran scatterplot and the signifi- 
cance of the LISA statistic is a so-called Moran scatterplot map, which 
shows the locations with significant LISA and indicates by a color code the 
quadrant in the Moran scatterplot to which that location belongs (Anselin 
and Bao, 1997). These maps visualize the location of significant clusters 
and thereby suggest potential multivariate associations and facilitate the 
initial identification of spatial regimes. 
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Appendix 2. Regression Diagnostics For Spatial 
Autocorrelation 

Regression diagnostics for spatial autocorrelation are based on the 
application of the Lagrange Multiplier principle or Rao’s Score principle. 
These tests have the advantage that they are based on estimates obtained 
from the model under the null hypothesis, which in our case is a standard 
regression model estimated by OLS. The regression residuals are used to 
test for the presence of spatial autocorrelation. The LM statistics for the 
two alternatives of interest (spatial error and spatial lag) are different; this 
offers the opportunity to exploit the values of these statistics to suggest the 
likely alternative (the basic results are presented in Anselin, 1988). 

Formally, the LM statistic against spatial error autocorrelation takes the 
form LME = [e’We/s’]’ /T, with e as a vector of OLS residuals, s’ as its 
estimated standard error, T = [tr(W + W’)W], and tr as the matrix trace 
operator. This statistic is asymptotically distributed as x’( 1) under the null. 
Although the LM form is based on an assumption of normality, Anselin 
and Kelejian (1997) show that this is not required and asymptotically the 
test is equivalent to a Moran’s test (appropriately adjusted for the use of 
residuals e). 

The LM statistics for spatial lag dependence are slightly more complex: 
LML = [e’Wy/s’]’ / [(WXb)’M(WXb)/s2 + TI, with M = I - X(X’X)-’X’, b 
as the  OLS estimate, and T as before. This statistic is also asymptotically 
distributed as ~ ‘ (1 )  under the null (see Anselin, 1988 for derivations). 
Extensive simulation studies in Anselin and Rey (1991) and Anselin and 
Florax (1995) illustrate the relative power of these tests and demonstrate 
their attractive properties for applied empirical work. 

In some instances, both LME and LML statistics turn out to be highly 
significant, making it difficult to decide which is the proper alternative. 
For such circumstances, Anselin et  al. (1996) developed a robust form of 
the LM statistics in the sense that each test is robust to the presence of 
local deviations from the null hypothesis in the form of the other alterna- 
tive. In other words, the robust LME is robust to the presence of spatial 
lag, and vice versa. The robust tests perform well in a wide range of simu- 
lations and form the basis of a practical specification search, as illustrated 
in Anselin and Florax (1995) and Anselin et al. (1996). All tests are imple- 
mented in the Spacestat software package (Anselin, 1999b). 




