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CHAPTER EIGHT

The Moran scatterplot as an ESDA tool
to assess local instability in spatial
association

LUC ANSELIN

81 Introduction

As large spatial databases become increasingly available to researchers in the social and
physical sciences, new tools are needed for the analysis of this information that match the
sophistication in storage, retrieval and display provided by the rapidly evolving tech-
nology of geographic information systems (GIS). In many instances, the context is data
rich but theory poor (Openshaw, 1991, 1993) and techniques are needed to ‘let the data
speak for themselves’ (Gould, 1981), that is, to aid in discovering patterns, and to suggest
potential relationships and hypotheses. A large battery of such methods now exists,
following the pioneering ideas of Tukey (1977) on exploratory data analysis (EDA),
which stress the interaction between the individual and the data by means of summarising
displays, innovative graphics and other highly computational tools (see for example, the
overview in Cleveland and McGill, 1988). EDA techniques such as box plots, Chernoff
faces, Tukey star diagrams, and scatter-plot matrices are commonly used in studies that
combine GIS and spatial analysis, for example, as illustrated in the applications of a so-
called archaeologist’s workbench in Farley et al. (1990) and Williams et al. (1990).
However, such applications are aspatial in that they ignore the special characteristics of
spatial data, such as spatial dependence and spatial heterogeneity (Anselin, 1990). As is
well known, such properties will affect the validity of standard statistical techniques, and a
special set of spatial statistical methods or spatial econometric methods are needed (for
overviews, see Cliff and Ord, 1973, 1981; Anselin, 1988a; Cressie, 1991; Haining, 1990).

Methods of exploratory data analysis that take into account the spatial aspects of the
data, that is, exploratory spatial data analysis (ESDA) are by no means as accepted as
standard EDA tools, although they are often suggested as being an important part of the
integration of spatial analysis and GIS (for example, Anselin and Getis, 1992; Bailey,
1992: Goodchild et al., 1992; Fotheringham and Rogerson, 1993). An important com-
ponent of such an ESDA is to measure the spatial association between observations for
one or several variables. As argued in Anselin and Getis (1992) and illustrated in Anselin
et al. (1993b), such measures can easily be incorporated in a framework that combines
spatial analysis with a geographic information system. Most indices of spatial
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112 LUC ANSELIN

association, such as Moran’s / and Geary’s ¢ spatial autocorrelation coefficients (ClLiff
and Ord, 1973, 1981), the variogram (Cressie, 1991), and generalised measures of spatial
autocorrelation (Hubert, 1987) are global in nature. In other words, they indicate the
presence or absence of a stable pattern of spatial dependence that is true for the whole
data set. In practice, such a viewpoint may not be very realistic, especially when very
large data sets are analysed. In these instances, the degree of spatial association between
observations may show instability in the form of local non-stationarity, spatial regimes or
spatial drift (for example, Anselin, 1990).

In this chapter, I suggest a simple tool to visualise and identify the degree of spatial
instability in spatial association by means of Moran’s /. It is based on the interpretation of
this statistic as a regression coefficient in a bivariate regression of the spatially lagged
variable (say, Wy) on the original variable (y). Such an interpretation readily allows for
the use of a scatterplot for easy visualisation. This scatterplot may be used in isolation, in
the traditional fashion, or may be integrated as an additional view on the data in a system
of dynamic or interactive graphics, to allow for so-called scatterplot brushing
(Monmonier, 1989; Haslett er al., 1990, 1991; Unwin, 1993).

In the remainder of the chapter, I first briefly discuss the salient characteristics of
techniques for exploratory spatial data analysis. Next, I review some methods that have
been suggested to deal with local instability in spatial association. This is followed by an
outline of the ideas behind the Moran scatter plot and a discussion of its properties and

potential use. The technique is illustrated with an analysis of the spatial pattern of conflict
between African countries.

82 Exploratory spatial data analysis

Broadly speaking, spatial data analysis can be defined as the statistical study of
phenomena that manifest themselves in space. As a result, location, area, topology,
spatial arrangement, distance and interaction become the focus of attention. This is well
recognised in geography, for example, as expressed in Tobler’s (1979) First Law of
Geography, in which ‘everything is related to everything else, but near things are more
related than distant things’. In order to make this concept operational, observations must
be referenced in space, that is, their locations must be specified as points, lines or areal
units. The spatial referencing of observations is the salient feature of a GIS.

The important role of location for spatial data, both in terms of absolute location (co-
ordinates in a space) as well as in terms of relative location (spatial arrangement, topology),
has major implications for the way in which statistical analysis may be carried out. In fact,
location leads to two different types of so-called spatial effects: spatial dependence and
spatial heterogeneity. The former results directly from the First Law of Geography. This
law will tend to result in observations that are spatially clustered, or, in other words, will
yield samples of geographical data that will not be independent. From a geographical
perspective, this spatial dependence is the rule rather than the exception, and it conflicts
with the usual assumption of independent observations in statistics. The dependence in
spatial data is often referred to as spatial autocorrelation (for a recent review from a non-
geographer’s perspective, see Legendre, 1993). The second, but equally important spatial
effect is related to spatial (or regional) differentiation which follows from the intrinsic
uniqueness of each location. Such spatial heterogeneity (or, non-stationarity) may be evi-
denced in spatial regimes for variables, functional forms or model coefficients (see Anselin,
1988a, Chapter 9, for a review, and, more recently, Dutilleul and Legendre, 1993).
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Exploratory data analysis may be considered as data-driven analysis, in that it
approaches the data without many preconceived ideas, theories or hypotheses. The focus
is on generating insight into patterns and associations, and on describing the data by
means of so-called resistant methods, that is, methods that are not (or are less) sensitive to
extreme or atypical observations (for a more detailed discussion, see Tukey, 1977; Good,
1983: and, in a spatial context, Haining, 1990, Chapter 2). None of the traditional tools of
EDA are especially geared to dealing with spatial data. Moreover, many EDA techniques
suggested for the initial exploration of correlation between variables, such as scatter-plot
matrices, or for post-model diagnostics, such as added variable plots, generate measures
of fit and of significance that become invalid in the presence of spatial dependence, as
pointed out in Anselin and Getis (1992).

Exploratory spatial data analysis (or, spatial exploratory data analysis) should focus
explicitly on the spatial aspects of the data, in the sense of spatial dependence (spatial
association) and spatial heterogeneity. In other words, these techniques should aim to
describe spatial distributions, discover patterns of spatial association (spatial clustering),
suggest different spatial regimes or other forms of spatial instability (non-stationarity), and
identify atypical observations (outliers). In a general sense, all currently available
indicators of spatial autocorrelation could thus be considered as part of ESDA. However,
this is not very meaningful in terms of the link between ESDA and GIS. In fact, many of the
old techniques of spatial data analysis were developed in an era of scarce computing power,
small data sets and minimal computer graphics, and their current implementations take
only limited advantage (if at all) of the data storage, retrieval and visualisation capabilities
of a GIS. More specifically, such methods tend to summarise a complete spatial
distribution into a single number, such as Moran’s / coefficient of spatial autocorrelation
(Moran, 1948). While this may have been useful in an analysis of small data sets, such as
the classic 26 Irish counties in Cliff and Ord (1973), it is not very meaningful (or may even
be misleading) in an analysis of spatial association in hundreds or thousands of spatial
units. The degree of non-stationarity (spatial instability) in large spatial data sets is likely to
be such that several regimes of spatial association would be present. For example, in an
analysis of the Weimar elections in 1930 in Germany, O’Loughlin et al. (1994) found that a
highly significant Moran’s / at the level of 921 electoral districts in effect hides several
distinct local patterns of spatial clustering and complete spatial randomness. Therefore, the
sole emphasis on global measures of spatial association as the type of spatial statistics
needed in a GIS (for example, as in Griffith, 1993) is misplaced, even though the
computation of such a statistic may be implemented with currently available GIS software
in a fairly straightforward manner (for example, Ding and Fotheringham, 1992). Instead,
the focus of ESDA techniques used in conjunction with a GIS should be on measuring and
displaying local patterns of spatial association, on indicating local non-stationarity, on
discovering islands of spatial heterogeneity and so on. A few methods that have been
suggested to accomplish this goal are reviewed next.

83 Local instability in spatial association

Measures of spatial association can be broadly classified into two groups, based on the
way in which spatial interaction is conceptualised. In one approach, more commonly
found in geography, the interaction is seen as a covariation between neighbouring
observations. I will refer to this as the neighbourhood view of spatial association.
Neighbours are typically defined as spatial units that have a common boundary or that are
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114 LUC ANSELIN

within a given critical distance of each other, although more complex definitions are
possible as well (see Anselin, 1988a, for a review). The neighbourhood or contiguity
structure of a data set is formalised in a spatial weights matrix W, with elements w;; = 0
when { and j are not neighbours, and non-zero otherwise (typically, w;; is assumed to be
zero). In a general sense, in the neighbourhood view of spatial association, indicators are
computed based on functions of the values observed at each location and the weighted
average (or, spatial lag, Wy) of observations at neighbouring locations. In other words,
these measures tend to deal with covariation or correlation between neighbouring values,
but no interaction occurs with locations further away, that is, interaction takes the form of
a step function. In the other approach, based on geostatistics, the spatial interaction is
conceptualised as a continuous function of a distance metric. I will refer to this as the
distance view of spatial association. The indicator of choice is the variogram or semi-
variogram, which is based on the (squared) difference between values observed at a given
distance apart (for a detailed overview, see Cressie, 1991).

The indicators of spatial association from either view that are most relevant for an
exploratory approach to spatial data analysis are those that show local patterns and allow
for local instabilities. Four particular strands of research are interesting in this respect. I
will briefly review them next (for a more extensive review, see Anselin, 1994).

831 Indicators based on the neighbourhood view of spatial association

83.1.1 G statistics

In a recent article, Getis and Ord (1992) suggest two statistics to measure the degree of
local spatial association for each observation in a data set. Their G; and G? statistics
consist of the ratio of the sum of values in neighbouring locations, defined by a given
distance band, to the sum over all observations (excluding the value at % for the G;
statistics, but including it for the G} statistic). This statistic may be computed for many
different distance bands, for example, as G}(d) = >_; w;i(d)y;/ 3_;yj, where wi(d) is a
binary matrix with wy= 1 when i and j are within a distance d from each other and zero
otherwise. Getis and Ord derive the moments for the G; and G} statistics under the
assumption of normality, which allows the indication of significant local spatial
association for each observation. The G; and G? statistics can be easily implemented and
visualised in an integrated GIS-ESDA framework, as illustrated in Ding and
Fotheringham (1992) and Anselin et al. (1993b).

These statistics are particularly useful in the detection of potential non-stationarities,
for example, when the spatial clustering of like values is concentrated in one subregion of
the data. Their interpretation differs from that of other measures of spatial association
(such as Moran’s /) in that positive association means clustering of high values and
negative association clustering of low values (and not the contiguity of opposite
magnitudes). A slightly different form was recently suggested in Ord and Getis (1995),
where the distributional characteristics are discussed in detail. An extension of the idea

behind the G; and G statistics to a general class of local indicators of spatial association
(LISA) is presented in Anselin (1995).

83.1.2 Geographical analysis machines

In the various geographical analysis machines developed by Openshaw and associates
(for example, as described in Openshaw, 1993; Openshaw et al., 1990, 1991), the focus is
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on the efficient and automatic search for patterns in a spatial data base, with little
interaction with the user and limited capability in terms of visualisation or statistical
inference. The search for indications of association is based on computationally intensive
algorithms for pattern recognition, such as neural networks, and is applied to spatial,
space—time as well as multivariate association. This approach is particularly well suited
to the indication of so-called hot spots ot spatial clusters, although the extent to which
such clusters are truly significant is sometimes unclear.

832 Indicators based on the distance view of spatial association

8321 Pocket plot

The pocket plot is a device suggested in Cressie (1991) as a way to identify local pockets
of non-stationarity in the variogram. When observations are given on a regular grid or
lattice, the residual contribution of each row or column to the variogram can be computed
for different lags. For each row or column, the distribution of these residuals can be
described by a box plot, which indicates whether the central tendency is different from
zero (which is the expected value) and also allows outliers (that is, distance lags for
which the residual contribution of the row or column is extreme) to be identified. In a
sense, they are the counterpart of the local indicators of spatial association in the
neighbourhood view, and can be readily visualised in a linked map. '

8322 Interactive spatial graphics

Though not specifically intended to measure local spatial association, the interactive
dynamic graphics tools developed by Haslett (1993) (Haslett et al., 1990, 1991; Unwin,
1993), include the variogram (in the form of a semi-variogram or variogram cloud) as an
additional view of the data, in addition to more traditional views, such as a histogram and
a map. This adds a measure of spatial association to the otherwise mostly descriptive
statistics and also allows the assessment of the extent to which particular locations (or,
rather, pairs of locations) drive the overall measure of association. In other words, their
approach, as implemented in the SPIDER-REGARD software packages allows for the
combination of indicators of spatial association and spatial heterogeneity (non-
stationarity) with a map view and non-spatial descriptive statistics, in a highly visual
and interactive manner.

84 The Moran scatterplot
84.1 Principle

Moran’s well known / statistic (Moran, 1948; Cliff and Ord, 1971, 1981) gives a formal
indication of the degree of linear association between a vector of observed values y and a
weighted average of the neighbouring values, or spatial lag, Wy. The linear association
between y and Wy underlies the specification of spatial autoregressive processes, which
are typically used to express the generating mechanism behind the spatial dependence.
Formally, Moran’s / can be expressed in matrix notation as:

1= (N/So)yWy/y'y

where N stands for the number of observations, Sp is the sum of all elements in the spatial
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weights matrix (Sp =Y_;3_; wy), y are the observations in deviations from the mean, and
Wy is the associated spatial lag. When the spatial weights matrix is row-standardized such
that the elements in each row sum to 1, this expression simplifies to:

I=yWy/yy
since in this case, So = N.

Since the y are in deviations from their mean, / is formally equivalent to a regression
coefficient in a regression of Wy on y (but not of y on Wy, which would be a more natural
way to specify the spatial process). The interpretation of Moran’s [ as a regression
coefficient provides a way to visualise the linear association between y and’ Wy in the
form of a bivariate scatterplot of Wy against y (and not of y against Wy, which would be
the usual form). I will refer to this as a Moran scatterplot. The Moran scatterplot can be
augmented with a linear regression (as a linear smoother of the scatterplot) which has
Moran’s [ as slope, and which can be used to indicate the degree of fit, the presence of
outliers, of leverage points, and so on, in the usual fashion. It is important to note that the
regression of Wy on y conforms to all the classical assumptions in regression analysis, and
thus can be subjected to all the standard diagnostics for model fit (for example, Belsley
et al., 1980). The slope in this regression is a legitimate estimate for Moran’s /, but its
significance (using the standard z-test for the regression) is not appropriate. The
interpretation of Moran’s / in this manner clearly illustrates the way in which the
statistic summarises the overall pattern of Tinear association, in the sense that a lack of
fit would indicate important local pockets of non-stationarity.

The interpretation of Moran’s I as a bivariate regression coefficient is perfectly
general, and in fact applies to any statistic that can be expressed as a ratio of a quadratic
form and its sum of squares. An example of this is the familiar Durbin—-Watson statistic
for serial correlation in time series, which takes the form &’Ae/de, that is, the coefficient
in aregression of Ae on e. In spatial analysis, the same approach can be taken for Moran’s

I on regression residuals and the Lagrange multiplier statistics for spatial dependence in
Anselin (1988b).

842 Implementation

The implementation of a Moran scatterplot is straightforward, since most statistical and
many GIS software packages include a scatterplot function and an associated linear
regression smoother and indication of fit. The only complicating factor is the construction
of the spatial lag, Wy. In order to accomplish this, the information on the spatial
arrangement of the observations, for example, as contained in a GIS, must be taken to
construct a spatial weights matrix. A number of approaches to carry this out with current
software are outlined in Anselin et al. (1993a). Once a spatial weights matrix is available,

a spatially lagged variable can be computed easily (Anselin, 1992; Anselin and Hudak,
1992).

843 Interpretation

An effective interpretation of a Moran scatterplot should centre on the extent to which the
linear regression line reflects the overall pattern of association between Wy and y. In other
words, the indication of observations that do not follow the overall trend represents useful
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information on local instability or non-stationarity. Three aspects in particular merit some
attention.

8431 Pockets of positive and negative association

Since the variables are taken as deviations from their means, the scatter plot is centred on
0,0. The four quadrants in the scatter-plot box thus represent different types of association
between the value at a given location (y;) and its spatial lag, that is, the weighted average
of the values in the surrounding locations (wy;). The upper right and lower left quadrants
represent positive spatial association, in the sense that a location is surrounded by similar
valued locations. For the upper right this is association between high values (above the
mean), while for the lower left quadrant this is association between low values (below the
mean). Note that these two quadrants correspond to the notions of positive (high—high)
and negative (low—low) spatial association of the Getis—Ord (1992) statistic. In other
words, an examination of the relative densities of these two quadrants provides an
indication of the extent to which the global measure of spatial association is determined
by (dominated by) patterns of association between high or low values, similar to a pattern
of significant positive and negative G statistics. Clearly, the substantive interpretation of
such a pattern should be of interest, but it may also indicate a poor choice of the spatial
weights matrix.

The upper left and lower right quadrants correspond to negative association, that is,
low values are surrounded by high values (upper left) and high values are surrounded by
low values (lower right). Again, the relative densities of these quadrants indicate which of
these patterns of negative spatial association (in the traditional sense) dominate.

It is highly unlikely that a positive (negative) Moran’s I is obtained by observations
that are only in the lower left and upper right (upper left and lower right) quadrants.
However, it is important to note the extent of deviant association and the degree to which
these points influence the slope of the regression line (Moran’s /). In some instances, a
considerable mix of the two types of association for a given Moran’s I may indicate the
presence of different spatial regimes or local non-stationarity. It also indicates that the
global indicator of spatial association may be a poor measure of the actual dependence in
the process at hand.

8432 Outliers and leverage points

Points in the scatterplot that are extreme with respect to the central tendency reflected by
the regression slope may be outliers in the sense that they do not follow the same process
of spatial dependence as the bulk of the other observations. They could thus be
considered pockets of local non-stationarity, especially if they correspond to spatially
contiguous locations or boundary points. The presence of outliers may also point to
problems with the specification of the spatial weights matrix or with the spatial scale at
which the observations are recorded. An intuitive indication of outliers can be based on
the normalised residuals from the regression of Wy on y.

Similarly, observations that exert a large influence or leverage on the regression slope
are of interest, again, particularly if they are spatially clustered or correspond to boundary
points. The latter case provides a way to assess the influence of boundary values on the
global measure of spatial association. A number of measures of leverage or influence,
such as the diagonal elements of the hat matrix of Hoaglin and Welsch (1978), and
Cook’s (1977) measure of influence have been suggested in the literature and most
statistical packages contain ways to implement them.
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843.3 Spatial regimes

Useful insight into the extent to which the linear regression is a proper approximation to
the pattern of spatial dependence in the data may be given by a robust local regression or
scatterplot smoother, such as a LOWESS (locally weighted scatterplot smoother,
Cleveland, 1979). A distinct non-linearity, alternating patterns of positive and negative
association, or clearly different slopes in the smoother all indicate the inappropriateness
of a single global measure for the spatial association in the data. When the distinct slopes
may be associated with spatially clustered observations, they may indicate the presence
of different spatial regimes, or spatial heterogeneity.

85 lllustration: spatial patterns of conflict in Africa

A geographical perspective has been increasingly applied in recent years to the analysis

of international interactions in general, and international conflict in particular (for a

review, see, for example, the collection of papers in Ward, 1992, and in particular Diehl,

1992). Measures of spatial association, such as Moran’s /, have been applied to

quantitative indices for various types of conflicts and co-operation between nation states,

such as those contained in the COPDAB database (Azar, 1980). For such indices of

international conflict and co-operation, both O’Loughlin (1986) and Kirby and Ward

(1987) found significant patterns of spatial association indicated by Moran’s I. The

importance of spatial effects in the statistical analysis of conflict and co-operation was )
confirmed in a study of the interactions between 42 African nations, over the period | Figure 8.1 Total conflict
196678, reported in a series of papers by O’Loughlin and Anselin (1991, 1992) and i
Anselin and O’Loughlin (1990, 1992). For an index of total conflict in particular, there
was strong evidence of both positive spatial autocorrelation (as indicated by Moran’s [
and the estimates in a mixed regressive, spatial autoregressive model) as well as spatial
heterogeneity in the form of two distinct spatial regimes (as indicated by Getis—-Ord G}
statistics and the results of a spatial Chow test on the stability of regression coefficients).
This phenomenon is thus particularly suited for an application of the Moran scatterplot as
an exploratory device.

The spatial pattern of the index for total conflict is illustrated in the quintile map in
Figure 8.1 (for details on the data séurces and the substantive interpretation, see
O’Loughlin and Anselin, 1992, and Anselin and O’Loughlin, 1992). The suggestion of
spatial clustering that follows from a visual inspection of this map is confirmed by a
strong positive and significant Moran’s 7 of 0.555, with an associated standard normal z-
value of 6.99 (all computations were carried out with the SpaceStat software for spatial
data analysis, Anselin, 1992). This statistic is computed for a spatial weights matrix based
on distance contiguity, using the smallest distance cut-off such that each country has at
least one neighbour (the distance cut-off is different from the one used in Anselin and
O’Loughlin, 1992, hence the slightly different results; it roughly equals the distance
between the centroids of Egypt and Sudan).

The countries with significant values for the Getis—Ord G} statistic (using a
significance level of p = 0.01) are depicted in Figure 8.2. The darker shade corresponds
with strong positive spatial association for Egypt, Sudan, Ethiopia, and Somalia,
indicating a spatial cluster of nations in Northeast Africa with high conflict indices. The
lighter shade on the map corresponds with strong negative association, and again results
in a spatial cluster of nations, but now with low conflict indices and in West Africa: Figure 82 Significant
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Figure 8.1 Total conflict index, Africa 1966-78.
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Mali, Burkina Faso, Liberia, Ivory Coast, Benin, Togo and Ghana. This confirms the
earlier suggestion of two spatial regimes found in Anselin and O’Loughlin (1992).

Figure 8.3 is the Moran scatterplot for this data, with a linear smoother
superimposed. The country labels are listed in Table 8.1. More than half of the
associations fall in the lower left quadrant (25 out of 42), indicating the dominance of
spatial contiguity of low values for the conflict index (negative spatial association in the
terminology of the Getis—Ord statistics). Of the 11 points in the upper right quadrant
(high-high association), four stand out, corresponding to Egypt (43), Sudan (42),
Somalia (27) and Ethiopia (28), the same four nations that obtained a highly significant
positive G7 statistic. While the overall tendency portrayed in the scatterplot is one of
positive association, six countries show the opposite: low values surrounded by high
values for Burundi (25) and Rwanda (26), and high values surrounded by low values for
Zaire (20), Angola (21), Zambia (29) and South Africa (33). Except for the latter, which
is a special case, this pattern suggests a spatial cluster of nations with negative spatial
autocorrelation (in the traditional sense) in West Africa, around and south of the
equator. Note that neither the global Moran’s [ nor the G} statistics are able to provide
an indication of this phenomenon.

A closer look at the fit of the linear smoother is provided in Table 8.2, where the three
most extreme observations are listed according to the normed residuals (outliers), the
diagonal element in the hat matrix (leverage) and Cook’s distance (influence). For
comparison purposes, the three most extreme (most significant) z-values corresponding to
the G} statistics are listed as well. While the linear regression has an acceptable R? of
0.574, the results in Table 8.2 indicate the presence of outliers that strongly influence the
regression slope. Specifically, Egypt (43) has the most extreme value for three of the four
indicators, and the second highest for the fourth (outlier). In other words, its unusually
strong pattern of spatial association with its neighbours pulls the regression line (Moran’s
I') upwards, providing a stronger indication of positive spatial association than warranted

Table 8.1 Country labels

Label Country Label Country

1 Gambia 22 Uganda

2 Mali 23 Kenya

3 Senegal 24 Tanzania

4 Benin 25 Burundi

5 Mauritania 26 Rwanda

6 Niger 27 Somalia

7 Ivory Coast 28 Ethiopia

8 Guinea 29 Zambia

9 Burkina Faso 30 Zimbabwe
10 Liberia 31 Malawi
11 Sierra Leone 32 Mozambique
12 Ghana 33 South Africa
13 Togo 34 Lesotho
i4 Cameroon 35 Botswana
15 Nigeria 36 Swaziland
16 Gabon 38 Morocco
17 CAR 39 Algeria
18 Chad 40 Tunisia
19 Congo 41 Libya
20 Zaire 42 Sudan
21 Angola 43 Egypt
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Figure 8.3 Moran scatterplot with linear smoother.

by the bulk of the other observations. A similar effect is exerted by Sudan (42). When
both countries are removed from the analysis, Moran’s I drops. It should be noted that
both Egypt and Sudan are boundary observations. Moreover, due to the construction of
the spatial weights matrix, Egypt only has one neighbour (Sudan), while Sudan only has
two (Egypt and Ethiopia). Since these countries all have high values for the conflict
index, the global measure of spatial association is unduly affected. In other words, a
careful analysis of the outliers and leverage points in the Moran scatter plot may indicate
problems with the specification of the spatial weights matrix, as is the case in this
example.

Finally, in Figure 8.4, a LOWESS smoother is superimposed on the Moran scatterplot.
Again, the strong influence of Egypt (43) and Sudan (42) on the slope of the line is made
clear. Also, the dip in the curve indicates a shift from positive to negative association

which points to spatial heterogeneity.

86 Conclusions

The interpretation of Moran’s [ as a bivariate regression coefficient and the associated
Moran scatter plot suggested in this chapter turn out to be useful devices in exploratory
spatial data analysis. In particular, a careful analysis of the Moran scatterplot may help to
gain insight into at least six important aspects of spatial association:
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Table 8.2 Indicators of extreme observations
Index Country label Country name Value
Outlier 20 Zaire 0.119
(normed residual) 43 Egypt 0.110
28 Sudan 0.082
Leverage 43 Egypt 0.412
(hat matrix) 42 Sudan 0.174
28 Ethiopia 0.052
Influence 43 Egypt 7.023
(Cook’s distance) 28 Ethiopia 0.189
42 Sudan 0.136
Spatial association 43 Egypt 4.70
(G} z-value) 42 Sudan 4.17
28 Ethiopia 2.56
4000 : : '
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Figure 84 Moran scatterplot with LOWESS smoother.

Decomposing spatial association into its four components: low-low and high—high

positive association and low-high and high-low negative association,

Identifying observations that are outliers relative to the global measure of spatial
autocorrelation given by Moran’s /,

Discovering different spatial regimes in the degree (slope) of spatial association,
Finding observations that exert a large influence (leverage) on the Moran coefficient,
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s Indicating the leverage and influence of observations that suffer from boundary effects,
m Suggesting problems with the specification of the spatial weights matrix.

The indication of extreme observations in terms of spatial association is similar to that
obtained from the Getis—Ord G? statistics. However, the Moran scatterplot provides
additional information as well and thus should be considered as a useful complement to
local indicators of spatial association.

The Moran scatterplot can easily be incorporated in an integrated ESDA-GIS
modelling strategy, especially one based on interactive dynamic graphics. Since a
scatterplot is already part of the usual views of the data implemented in this approach, it
takes little additional effort to include a special scatterplot that relates the Wy toy. Sucha
framework would provide a powerful tool for the exploratory analysis of spatial
dependence.
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