
Introduction to the
Command Line:

The Shell and Basic Commands

Ricky Patterson
Research Data Services

https://library.virginia.edu/data
University of Virginia Library

ricky@virginia.edu

https://library.virginia.edu/data
mailto:ricky@virginia.edu

2

What We Will Learn

• The fundamental commands of the
Unix operating system.

• Everything here is also applicable to
the Linux operating system. I will refer
to both of these as *nix systems.

3

• Introduction to the Shell
– Redirections/Pipes

• Files and Directories
– Listing Files, File Types
– Directory Structure
– File Permissions
– Wildcards

• Getting Help
• Advanced Commands, Editing

Outline

4

What Is *nix?

• *nix is a computer operating system, a control
program that works with users to
– run programs,
– manage resources, and
– communicate with other computer systems.

• *nix systems are
– Multiuser: Several people can use a *nix computer at

the same time
– Multitasking: Any of these users can also run multiple

programs at the same time
– Plain Text Data Storage
– Hierarchical File System

5

How do you get *nix?

• Linux and macOS are built on Unix, so it is
available natively on these operating systems. On
a Mac, you will use Terminal to interact with the
shell.

• Windows 10 and 11 (64-bit) now allow you to
activate the Windows Subsystem for Linux
(WSL). You need to be an administrator of your
computer in order to do this.
– https://docs.microsoft.com/en-us/windows/wsl/install
– Alternatively, you can install a Linux Virtual Machine under

Windows, but WSL is much more straightforward.
• For this class, in a pinch, you can make use of a browser

terminal testbed: https://bit.ly/fedora-term

https://docs.microsoft.com/en-us/windows/wsl/install
https://bit.ly/fedora-term

6

(base) UL-RJP0I-MBP13:~ rjp0i$

•That “something” is called a prompt. It is prompting
you to enter a command.

•Every *nix command is a sequence of letters and
numbers. (There are no spaces in a command name
itself).

•*nix is also case-sensitive. This means that cat and Cat
and CAT are all different commands.

•When you first log into a *nix (Unix or Linux) system, you
are presented with something that looks like this, or this:

Command Line of *nix

bash-3.2$

7

Why use the command line, instead of a GUI interface?

• While a graphical tool is usually available for most
tasks, you can do more from the command line

• Command line is always available, and it works the
same from platform to platform. GUI tools can vary or not
even be available (e.g., through remote access).

• Command line commands are easily
documented/recorded and easily reproduced.

Command Line
Prompt Command

Results

8

• The prompt is displayed by a special program called
the shell. It is the interface between the operating
system and the user.

• Shells accept commands from user and uses the
operating system to run those commands. It then
returns the results to the user.

• Shells can also be programmed in their own
language. These programs are called “shell scripts”.
Shell scripts are powerful, but beyond the scope of
this introduction.

The Shell

9

• The shell parses commands before executing them.
• It expands wildcard expressions (“ls *.dat” to show

all files ending in .dat)
• The shell stores a history of previous commands
• The shell provides a way for the user to define

commands (aliases)
• The shell maintains a set of user-defined variables

(environment and system variables)

The Shell

10

• The shell has the ability to auto-complete
commands or file names.

• The shell provides control structures (while/do,
if/then/else) that allow you to write programs (shell
scripts)

• The shell provides some plumbing which allows
you to connect commands together with pipes, as
well as to redirect input and output

The Shell

11

• When you first login, the prompt is displayed by
the default shell, and you are running your first
*nix program. (This might be bash, or zsh, or…)

• If you remain logged in, the shell will constantly be
running (unless you choose to change to another
shell).

• Other shells available include csh, tcsh, ksh, zsh and
fish. They all behave very similarly but have
differences/quirks that appeal to different users.

The Shell

12

• Commands can usually be modified with options (switches). An option
modifies how the program runs.

• For ls, -l is an option that lets you see more information about the contents of
the current directory (type ls -l in your terminal)

• A few other switches for ls
-S (combined with –l) sorts files in order of descending size
-T (combined with –l) sorts files in reverse time order
-a Lists all files, including hidden files

• There are many, many more options for ls.

Command Syntax: Options

13

• Many *nix commands are like ls.
– They have options, which are generally one character

after a dash, and they have arguments.

• Unlike ls, some commands require certain arguments and/or
options.

• Options can be combined: ls –als

• Some options can be given as words, rather than letters. If
this is the case, it is used with a double dash: lpr --help

Command Syntax: Options

14

Autocompletion
•If you want to see commands beginning with c
you can write c then press Tab key

…and 104 more commands…
Now, what happens if you type “h” after the “c” and
press Tab again?

15

18

Aliases

(For aliased commands in bash, use command –v instead of which to check definition)

20

Stringing Commands Together
*nix commands can be strung together to carry out complex actions.
The output of one command can be sent to the input of another, and
so on. This is done commonly through “pipes” and “backticks”

In a directory with a lot of files, typing ls –l will quickly fill the
screen. We can try typing ls –l | less
This shows the output of ls one page at a time, by redirecting the
output of the ls –l command into the less command.

Much more complicated command strings are possible:
ls –l | grep stars | sed -e ‘s/star/STAR/’ | awk ‘{print $3,$NF}’

21

Stringing Commands Together
Keeping in mind where input/output and error messages go is
important when stringing commands together.
• stdout is the channel the program uses to print output
• stdin is the channel the program uses to obtain input
• stderr is the channel the program uses to report errors

22

• ls –l | grep stars > filename
– Create a new file called filename, and fill it with the output

(stdout) of the command. If filename already exists, it will be
overwritten (if permitted)

• ls –l | grep stars >> filename
– Append the output (stdout) from the commands to an existing file

called filename

• To redirect both the stdout and the stderr to a file:
• In tcsh: ls –l | grep stars >& filename
• In bash: ls –l | grep stars > filename 2>&1

Redirecting Output to a file

23

Commands between backticks ` ` are evaluated and then the output is
inserted into the command line. It is just as though you had typed the
output of the backticked command directly into the command line.
The other commands patiently wait for the backticked commands to
be evaluated.

Nesting Commands with backticks (`)

24

Files and Directories

25

Files and Directories

26

• Note that file names are case sensitive. Caution: This is true
in Linux, but not quite true in OS X. OS X preserves the
case of the filename, but ignores it.

Listing Files in Current Directory

27

Listing Files in Current Directory

File Type

Permissions

User and Group
Ownership

File Size (bytes)

File Modification Time

28

Symbolic Links

Symbolic links are alternative names for a file or directory. Here
“opt_link” is a symbolic link pointing to a real file (a directory, in
this case) called “opt” (which is located in a different directory).

To create a symbolic link, use the ln –s command:
ln –s RealFile SymlinkedFile
Order is important!

29

Directory Files

Directories can contain other directories (sub-directories of the first
directory). The sub-directories appear in the listing above. They
can in turn contain other files and other directories (and symbolic
links).

30

• In *nix, the collection of directories and files is called the file
system. The file system consists of at least one directory, called
the “root” directory

• Within the “root” directory, there are more directories, and
inside those directories are files and yet more directories.

• In *nix there is a single directory tree (unlike Windows, with
the separately lettered C: drive, D: drive, etc.)

• Note that *nix uses “/” for the directory separator, while
Windows uses “\”

Storing Information - Directories

31

• You can see what directory you are currently in using pwd

• The path to a file or directory is given as a list of parent
directories, separated by slashes.

• You can change your current directory using cd

Special Directories: The Current Directory

32

• Each user has a home directory, which is the current directory
when you first log in

• You can always change to your home directory using cd
without argument

• The tilda is a shorthand way to refer to the home directory

Special Directories: The Home Directory

33

• Each file and each directory have a name. (Keep in mind
that directories are actually files)

• A short name for a file could be penguin,
• while it’s “full name” could be /home/bird/penguin

The full name is usually called the path.
• The path can be divided into a sequence of directories.
• For example, here is how /home/bird/penguin is read:

/home/bird/penguin
This signifies the directory called home. It is
within the root directory.

The second slash corresponds to the
 directory bird, which is within home.

penguin is within bird.

The initial slash indicates the root directory.

34

• A path may refer to either a directory or a filename, so fish
could be either.

• All the items before the short name must be directories.

Root Directory “/”

Sub-Directory

/homeDirectoryDirectory

penguin

fishSub-directoryFile

Directory
structure

File

35

bash-3.2$ cd /home

bash-3.2$ cd

• Reminder: If you omit the optional argument directory,
you’re returned to your home, or original directory (the
same as typing cd ~). Otherwise, cd will change you to the
specified directory.
• There are two directory names used only for relative
pathnames:

• The directory “.” refers to the current directory
• The directory “..” refers to the parent directory of the
current directory

•The directory “..” is most useful moving back up a directory:
cd ..

•The command “cd –” will return you to the most recent
directory visited.

Navigating Directories

36

drwxr-xr-x 2 rjp users 6 Dec 6 2020 file.txt
us

er

gr
ou

p

ot
he

rs file name

read, write, execute
permissions of files

owner group

time stamp

File type

Permissions

For each file, three sets of permissions bits (read, write, and
execute) can be set. They apply to the three types of users.
The user who owns the file, the group that owns the file, and
everybody else (other) who has an account on the file
system.

37

(owner) (group) (others)
 chmod [number][number][number] file1

 Number = (read)4 + (write)2 + (execute)1

• Example: chmod 754 file1

 for owner: read, write and execute permissions (4+2+1)
 for group: read and execute permissions (4+0+1)
 for others: only read permission (4+0+0)

• chmod (change mode) is used to change the permissions
on a file.

Permissions: chmod

38

• Ctrl+A Move to beginning of line

• Ctrl+E Move to end of line

• Ctrl+L Clear the screen

• Ctrl+U Clear the line before the cursor position

• Ctrl+K Clear the line after the cursor position

• Ctrl+C Kill the command that is currently running

• Ctrl+D Exit the current shell

• Alt+F (or Esc+F) Move cursor forward one word

• Alt+B (or Esc+B) Move cursor backward one word

Moving around on the command line

39

• *nix recognizes wildcards that allow it to match patterns to
look for files with similar names. ls *.txt will return a list
of all files in the current directory that have a filename
ending in “.txt”

• The shell automatically expands the wildcard, and passes
the resulting matches to the command (in this case, ls)

Wildcards – Globbing

40

41

man

• The man command displays reference pages for
the command you specify.

• The *nix man pages (man is short for manual)
cover every command available.

• To search for a man page, enter man followed
by the name of the command.

• For example:

Getting Help

42
To view more, press spacebar

To exit, press “q”

43

• There is also a keyword function in man.

• For example;
– If you are interested in any commands that deal with

Postscript, the printer control language for Adobe
– Type man -k ps or man -k Postscript,

 you’ll get a listing of all commands, system calls, and
other documented parts of *nix that have the word “ps”
(or “Postscript”) in their name or short description.

• This can be very useful when you’re looking for a tool to do
something, but you don’t know its name - or if it even exists!

Getting Help: man

44

• pwd (present working directory) tells you your
current directory.
– Note: Most commands act, by default, on the current

directory. For instance, ls without any arguments
displays the contents of the current directory.

pwd

cd
• cd is used to change directories.
• The format of this command :

 cd new-directory (where new-directory is the name of
the new directory you want).

Navigating Directories

45

mkdir (make directory) is used to create a new directory,
• It can take more than one argument, interpreting each

argument as another directory to create.
• By default, it will create the new directory as a

subdirectory of the current directory

mkdir

rmdir
rmdir (remove directory) is used to remove a directory,
• rmdir will refuse to remove a non-existent directory, as
well as a directory that has anything in it.

46

• The primary commands for manipulating files under *nix are
cp, mv, and rm. They stand for copy, move, and remove,
respectively.

Moving Files/Directories

• cp is used to copy contents of file1 to file2

cp file1 file2 (contents of file1 is copied to file2 in the same directory)

cp folder1/file1 folder2 (contents of file1 is copied to file1 in the
inside of folder2 directory)

cp

47

• rm is used to remove a file.
– rm filename ---> removes a file named filename

rm

• mv is used to move a file.
– mv filename /path/newname ---> moves a

file named filename to a new location, with a new name
• looks like cp, except that it deletes the original file after

copying it.
• mv will rename a file if the second argument is a file. If the

second argument is a directory, mv will move the file to the
new directory, keeping it’s shortname the same.

mv

48

• In addition to the commands like cd, mv, and rm, we learned
in the directories discussion, there are other commands that
just operate on files, but not the data in them.

• These include touch, chmod.
• None of these commands care what is within the file.

Operating on Files

49

• There are two major commands used in *nix for listing files,
cat, and more (and less). head and tail are also useful.

Examining Files

cat

• cat shows the contents of the file.
 cat [-nA] [file1 file2 . . . fileN]
• cat is not a user-friendly command-it doesn’t wait for you to

read the file and is mostly used in conjunction with pipes.
• However, cat does have some useful command-line options.

For instance, n will number all the lines in the file, and A will
show control characters.

50

less is similar to more but also allows you to scroll
backwards or forward through a file. less also quickly loads
a file and can operate on a file that is still being written to.

 less > more or “less is more, more or less”

Examining Files: more and less

• more is much more useful, and is the command that you’ll
want to use when browsing ASCII text files
 more [-l] [+linenumber}] [file1 file2 ... fileN]
• A useful option is l, which will tell more that you aren't
interested in treating the character Ctrl-L} as a ``new page”
character. more can also start on a specified line number.

less

more

51

head will display the first ten lines in the listed files.
 head [- lines}] [l file1 file2 ... fileN]
• Any numeric option will be taken as the number of lines to

print, so head -15 frog will print the first fifteen lines of
the file frog

head

tail

• Like head, tail display only a fraction of the file.
• tail also accepts an option specifying the number of lines.
 tail [-lines] [l file1 file2 ... fileN]

Examining Files: head and tail

52

These commands will search a file, perform certain operations
on the file, or display statistics about the file.

More info about the file

• grep is the generalized regular expression parser.
• This is a fancy name for a powerful utility which can only
search a text file.
grep [-nvwx] [-number] { expression} [file1 file2 ... fileN]

grep

53

• The GNU version of diff has over twenty command line
options. It shows you what the differences are between
two files

• diff file1 file2

diff

More info about the file

54

Some Other *nix Commands

• The power of *nix is hidden in small commands that
don’t seem too useful when used alone, but when
combined with other commands produce a system that’s
much more powerful, and flexible than most other
operating systems.

• The commands include sort, grep, more, cat, wc, spell,
diff, head, and tail.

The Power of *nix

55

• nano is a simple text editor. There are many text editors
available. But nano is simple:
– nano file

• vi is the original Unix “visual editor” and is available on
all *nix computers (but can be non-intuitive). Like emacs,
it is context aware (autocompletion, indentation and color
coding of text). A self-professed great Vim cheat sheet:
http://vimsheet.com/

• emacs is a very powerful, extensible editor. Emacs and vi
are among the most commonly used editors.
Emacs cheat sheet:
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

Common Text Editors
nano

vi (vim)

emacs

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

More help

56

• Chapter 1 of
Computing Skills for Biologists
(Allesina & Wilmes)
• See Virgo for free access to ebook

• See website for downloads
https://computingskillsforbiologists.com

• Clone their git repository for examples:
git clone https://github.com/CSB-book/CSB.git

This book is not just for biologists but is valuable for graduate students in any
datacentric field. It covers R, Python, Regular Expressions, version control, LaTeX,
SQL, and the command line.

http://proxy01.its.virginia.edu/login?url=http://www.degruyter.com/isbn/9780691183961
https://computingskillsforbiologists.com/
https://github.com/CSB-book/CSB.git

More help
• LinkedIn Learning free courses, including:

– “Learning Linux Command Line”
– “Unix for Mac OS X Users”

• Be sure to access LL materials for free by using this
Library link to take advantage of the UVA subscription:
https://library.virginia.edu/linkedin-learning

• Lots of online resources (unix.stackexchange…)
• http://www.doc.ic.ac.uk/~wjk/UnixIntro/
• Me – Please contact me (ricky@virginia.edu)

57

http://www.doc.ic.ac.uk/~wjk/UnixIntro/

