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Research Data Services in the Library

Research Data Services: www.library.virginia.edu/services/
I Data management plans
I GIS training and consultations
I Locating data, archiving data

StatLab Services: statlab.library.virginia.edu
I Individual consulting: advice, training or feedback on quantitative

research
I Workshops: Tentative fall schedule is available

Upcoming Events
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Multilevel Data

Multilevel data are meaningfully grouped into relevant larger groups or contexts,
e.g., lower level units are nested within higher level units:

Students within schools, individuals within familes

Voters nested precincts/districts/states, or within elections

Survey respondents within sampling strata or geographic units

Suspects on trial within particular judges/jurisdictions

Legislators within different legislatures

Repeated observations, time-series cross-section data, missing data

For example (multilevel1.do)
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Multilevel Propositions
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But why do I need a special model?

Or less appropriate ways of dealing with multilevel data...

Aggregating (least common)

E.g., a regression of the means.

Disaggregating (more common)

E.g., estimate j separate models for j separate groups.

Pooling (very common)

E.g., pool all observations, treat data as independent observations all from
common population.

What could possibly go wrong? (multilevel1.do)
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The Intra-Class Correlation

The intra-class correlation, ρ, or degree of dependence among observations

ρ =
τ 2

τ 2 + σ2

where τ 2 =between-group variance and σ2 =within-group variance.
ρ increases as variation between groups increases or variation within groups
decreases.

σ̂2 =
1
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Context, context, context

Contextual variation can have consequences

Multilevel models provide a way to incorporate such information, can provide
new insight

Greater Efficiency (relative to disaggregation)! Less Bias (relative to “naive
pooling”)!

Are multilevel models always better? No! Requires more data, more
assumptions (more later)
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Level 1 Model

The multilevel model will have a level-1 model and a level-2 model (at least),
which will be combined to produce the estimated model.

The level-1 model is:
yij = β0j + β1jxij + εij (1)

where i indicates level-1 observations and j indicates level-2 observtions.

Let:

E (β0j) = γ0 Var(β0j) = τ00 = τ 20

E (β1j) = γ1 Var(β1j) = τ11 = τ 21

Cov(β0j , β1j) = τ01
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Level 2 Model

To explain the variation in intercepts and slopes, we specify the level-2 model:

β0j = γ00 + γ01zj + u0j (2)

β1j = γ10 + γ11zj + u1j

where zj represents a macro-level independent variable.

u0j and u1j are disturbance terms; the variance of these represents the deviation

of unit j from the average intercept and slope.
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Some Simplifying Assumptions

Some simplifying assumptions

E (εij) = 0

Var(εij) = σ2

εij ∼ N(0, σ2)

E

[
u0j
u1j

]
=

[
0
0

]

Var

[
u0j
u1j

]
=

[
τ 20 τ01
τ10 τ 21

]
= T

Uj ∼ N (0,T)

Cov(u0j , εij) = Cov(u1j , εij) = 0
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The Estimated Equation

The model we actually estimate is the reduced-form equation obtained by
combining the level-1 and level-2 models:

yij = γ00 + γ01zj + γ10xij + γ11zjxij + u0j + u1jxij + εij (3)

Things to note:

The cross-level interaction, zjxij , is more obvious in this form.

The error term is complex: non-independent and heteroskedastic.
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One-way ANOVA with Random Effects

If β1j = 0∀ j and γ01 = 0, Equations (1-3) reduce to an ANOVA with random
effects.

The level-1 model::
yij = β0j + εij

The level-2 model:
β0j = γ00 + u0j

Reduced-form model:
yij = γ00 + u0j + εij

Let’s see it in action!

The ICC
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Random Intercept Model
Adding a level-1 variable produces the level-1 model:

yij = β0j + β1jxij + εij

The level-2 models:

β0j = γ00 + u0j

β1j = γ10

Reduced-form model:
yij = γ00 + γ10xij + u0j + εij

In action!

Inference for fixed coefficients: Hypotheses of the form

H0 : γpq = 0

Ha : γpq 6= 0

can be tested with a standard z-test.
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Random Coefficient Model
Allowing the slope to vary produces the level-1 model:

yij = β0j + β1jxij + εij

The level-2 models:

β0j = γ00 + u0j

β1j = γ10 + u1j

Reduced-form model:

yij = γ00 + γ10xij + u0j + u1jxij + εij

Action!

Inference for variance components: The hypothesis is one-sided

H0 : τ 2p = 0

Ha : τ 2p > 0

and the L-R test is preferred.
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Mixed Effects Model

Adding level-2 covariates to account for the variation in intercepts and slopes
produces the “full” mixed-effects model outlined in Equations (1)-(3):

The level-1 model:
yij = β0j + β1jxij + εij

The level-2 model:

β0j = γ00 + γ01zj + u0j

β1j = γ10 + γ11zj + u1j

The combined model:

yij = γ00 + γ01zj + γ10xij + γ11zjxij + u0j + u1jxij + εij

Action!

Level-2 PRE: R2
pj = 1− τ̂ 2

p(lme)

τ̂ 2
p(rcm)
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The Linear Mixed-Effects Model, Level 1

The level-1 model in scalar form, with P level-1 predictors:

yij = β0j + β1jx1ij + β2jx2ij + · · ·+ βpjxpij + εij

= β0j +
P∑

p=1

βpjxpij + εij

The usual assumptions that εij ∼ N(0, σ2).
In matrix form:

Yj = Xjβj + εj

Assume: εj ∼ N(0, σ2I).

Michele Claibourn, StatLab () Multilevel Models I 16/19 June 20/21, 2013 16 / 19



The Linear Mixed-Effects Model, Level 2

The level-2 model in scalar form, with Q level-2 predictors:

β0j = γ00 + γ01z1j + γ02z2j + · · ·+ γ0qxqj + u0j

= γ00 +
Q∑

q=1

γ0qzqj + u0j

βpj = γp0 + γp1z1j + γp2z2j + · · ·+ γpqxqj + upj

= γp0 +
Q∑

q=1

γpqzqj + up

Assumptions: E (upj) = 0,V (upj) = τpp = τ2p ,Cov(upj , up′j) = τpp′

In matrix form:
βj = Zjγ + uj

Assume: uj ∼ Np(0,T)
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The Linear Mixed-Effects Model

By substitution, the linear mixed-effects model (in scalar) is:

yij = γ00 +
Q∑

q=1

γ0qzqj +
P∑

p=1

γp0xpij +
Q∑

q=1

P∑

p=1

γpqzqjxpij +

u0j +
P∑

p=1

upjxpij + εij

The same model in matrix:

Yj = XjZjγ + Xjuj + εj
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Multilevel Models II

Next week

More on estimation and inference: inference for multiple parameters,
variance paramaters; restricted maximum likelihood; sample sizes

More on model assessment: exploratory analysis and model building,
model assumptions, the role of centering

Generalizing the model: three-level models, generalized linear models,
longitudinal applications
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