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Research Data Services in the Library

Research Data Services: www.library.virginia.edu/services/
I Data management plans
I GIS training and consultations
I Locating data, archiving data

StatLab Services: statlab.library.virginia.edu
I Individual consulting: advice, training or feedback on quantitative

research
I Workshops: Tentative fall schedule is available

Upcoming Events
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The Linear Mixed-Effects Model, Level 1

In scalar:
yij = β0j + β1jxij + εij (1)

Wtih εij ∼ N(0, σ2). In matrix form:

Yj = Xjβj + εj

With εj ∼ N(0, σ2I).
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The Linear Mixed-Effects Model, Level 2

In scalar form:

β0j = γ00 + γ01zj + u0j (2)

β1j = γ10 + γ11zj + u1j

With

E

[
u0j
u1j

]
=

[
0
0

]

Var

[
u0j
u1j

]
=

[
τ20 τ01
τ10 τ21

]
= T

In matrix form:
βj = Zjγ + uj

With uj ∼ N (0,T)
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The Linear Mixed-Effects Model

By substitution, the linear mixed-effects model (in scalar) is:

yij = γ00 + γ01zj + γ10xij + γ11zjxij + u0j + u1jxij + εij (3)

In matrix:

Yj = XjZjγ + Xjuj + εj
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EDA

It’s always a good idea to examine your data visually before embarking on
model estimation.

Looking at within-unit regression coefficients
I Caterpillar plots: Is there variation to explain?
I Scatterplots: What is the nature of the relationship between x and y?

Looking at intercepts and slopes by level-2 covariates: What might
explain variation across clusters?

I Categorical
I Continuous

Assessing distributions: Are normal distributions a reasonable
reference for inference?

I Of level-1 ys and εs
I Of random βs
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Model Building

Model specification should be informed by theory and data exploration.

The number of VCV parameters to be estimated increases rapidly
with each random coefficient; more information is needed.

Before deleting a level-1 coefficient, check for no slope heterogeneity
as well as no average effect.

With random intercepts and slopes, and interactions, give the xs
meaningful zero points (via centering around the grand mean or
group means)
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Centering

Intercept variation

Y

X
X=0 X*=0 X**=0
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Estimation

Recall the general two-level model:

Yj = Xjβj + εj

And
βj = Zjγ + uj

Combined:
Yj = XjZjγ + Xjuj + εj

We must estimate γ, T and σ2. From these we derive the estimates of β.
We’ll choose the estimates of the parameters that maximize the likelihood.
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The Fixed Effects

The combined model for β̂j :

β̂j = Zjγ + uj + ej

The variance of β̂j , conditional on Zj is:

var(β̂j) = var(uj + ej) = T + σ2(X ′j Xj)
−1 = ∆j

If the data are unbalanced, the ∆j values will differ by cluster. If ∆j is
known, the unique, minimum-variance, unbiased estimator of γ would be
the GLS estimator:

γ̂ =
(∑

Z ′j ∆−1
j Zj

)∑
Z ′j ∆−1

j β̂j
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The Likelihood Function

The likelihood function (generically):

L(γ,T , σ2|y) ∝
J∏

j=1

p(yj |γ,T , σ2)

To get the marginal density of the data

L(γ,T , σ2|y) =
J∏

j=1

∫
p(yj |uj , γ, σ2)p(uj |T , σ2)duj

Where the conditional density of y , p(yj |uj , γ, σ2), is multivariate normal:

p(yj |uj , γ, σ2) =
exp[−(yj − xjzjγ − xjuj)

2/2σ2]

(2πσ2)
nj
2

And the marginal density of u, p(uj |T , σ2), is multivariate normal:

p(uj |T , σ2) =
exp((−u′jT−1uj)/2)

(2π)
q
2 (T )

1
2
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Restricted Maximum Likelihood

REML adjusts for the uncertainty about the fixed effects; ML does not.

In ML, estimates of variance and covariances are conditional on point
estimates of the fixed effects (default in Stata)

REML takes into account that these point estimates contain
uncertainty and adjusts for this (default in R, SPSS, SAS, HLM)

When differences occur, it is in the estimation of T; full ML variance
estimates will be smaller, particularly when sample sizes are small.

REML: For any possible values of the fixed effects, γ, say γm, we can
define a likelihood of T and σ2: Lm(T , σ2|γm, y). Averaging over all
possible values of Lm(T , σ2|γm, y) produces a likelihood of T and σ2 given
y alone.
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The Random Coefficients
Two possibilities for predicting βj :

1 The OLS regression coefficient based on data from each cluster:

β̂j = (X ′j Xj)
−1X ′j Yj

2 The predicted value of βj conditional on group characteristics in Zj :

ˆ̂βj = Zj γ̂

The optimal, empirical Bayes (EB) combination of these:

β∗j = Λj β̂j + (I − Λj)Zj γ̂

Where the weight, Λj is the ratio of the parameter variance matrix to the
total variance matrix:

Λj = T (T + σ2(X ′j Xj)
−1)−1
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Hypotheses Tests

Fixed effects

Fixed parameters can be tested with a standard z-test.

Multiple parameters (joint tests, linear constraints, etc.), can be
tested via a Wald test.

Variance components

LR test is preferred (for single and multiple parameters).

To implement, estimate “full” model and model with some of the
variance parameters set to zero.

For models fit using REML, fixed effects must be the same across
both models.

For hypotheses on the boundary of the parameter space (i.e., 0), the
significance level for the LR test is an upper bound.

In general, estimation problems tend to arise from estimation of the
variance components.
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Sample Sizes

Inference is based on asymptotics, so a key question is what sample size is
large enough. Large enough for what?

The power of the Wald test for level-2 fixed effects relies on the
number of clusters; the power of the test for level-1 fixed effects relies
on total sample size.

In general, the standard errors of the variance components are more
severely biased with small J.

Some rules of thumb found in the literature (J/N): 30/30 or 10/30
for fixed effects; 50/20 or 30/20 for level-2 fixed effects; 100/10 or
50/10 for variance/covariance components.

The number of VCV components to be estimated is
[
p(p+1)

2

]
+ 1 – where

p is the number of random level-1 predictors in the model.
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Model Assesment

Model Comparison

Likelihood ratio tests

Information criteria

Assessing Assumptions

Distribution of level-1 errors

Distribution of random effects

Shrinkage

Michele Claibourn, StatLab () Multilevel Models II 16/22 June 27/28, 2013 16 / 22



More than two levels

The 3-level model may be written as:

yijk = β0jk +
P∑

p=1

βpjkxpijk + εijk (4)

βpjk = γp0k +
Q∑

q=1

Zqjk + upjk (5)

γpqk = αpq0 +
S∑

s=1

αpqswsk + rpqk (6)

Where

xpijk =level-1 covariates: i indexes level-1 units, p indexes level-1 covariates

zqjk =level-2 covariates: j indexes level-2 units, q indexes level-2 covariates

wsk =level-3 covariates: k indexes level-3 units, s indexes level-3 covariates
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The generalized linear mixed-effects model

The GLMM has a linear predictor component, i.e., the structural model, as
well as a specific error structure depending on the type of nonlinear model
estimated, and a link function, which governs how the nonlinear function is
transformed.

GLM Families and Links You Already Know

Family Link Function Model

Gaussian Identity Linear model
Binomial Logit Logit model
Poisson Log Poisson count model
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The GLMM for Binary Outcomes

1 Level-1 sampling model:
yij ∼ Binom(πij ,mij) (7)

2 Level-1 link function, the logit:

ηij = log

(
πij

1− πij

)
(8)

The inverse of the link function:

πij =
exp(xβ)

1 + exp(xβ)
(9)

3 Level-1 structural model, same as above:

ηij = β0j + β1jx1ij + · · ·+ βpjxpij (10)

4 Level-2 model, same as above:

βpj = γp0 +
Q∑

q=1

γpqzqj + upj (11)
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Estimation of the GLMM

Obtaining ML estimates: (1) find the likelihood, this requires integration of the random
effects from the joint distribution of the data and the random effects, (2) maximize the
likelihood. Less easy when the model is nonlinear. Recall the joint distribution of the
data and random effects

g(y , u|γ,T , σ2) = p(yj |uj , γ, σ2)p(uj |T , σ2) (12)

And the likelihood of the data given the parameters

L(γ,T , σ2, u|y) =
J∏

j=1

∫
p(yj |uj , γ, σ2)p(uj |T , σ2)duj (13)

NB: Produces joint distributions that are nonconjugate mixtures (can’t be solved

analytically). Integration achieved via numerical approximation – penalized

quasi-likelihood, a Laplace approximation, (adaptive) Gauss-Hermite Quadrature... or

via Bayesian algorithms.

Michele Claibourn, StatLab () Multilevel Models II 20/22 June 27/28, 2013 20 / 22



Alternative Error Structures

Covariance of random effects

Independent, exchangeable, identity, unstructured

Level-1 error

Independent, exchangeable, ar, ma, etc.

Heteroskedasticity
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