
Interactive Web Apps in R with shiny

Clay Ford

Spring 2019

What is shiny?

I shiny is a package that provides functions for converting R
code into interactive web applications

I The applications it creates can be run in RStudio; they don’t
have to be hosted on a web site

I Developed by RStudio
I Doesn’t require web development skills but does require a good

grasp of R

Why use shiny?

Create interactive apps. . .

I for teaching statistical concepts: Example
I for using and visualizing statistical models: Example
I for exploring data or creating reports: Example

See more at the shiny Gallery: https://shiny.rstudio.com/gallery/

https://gallery.shinyapps.io/tdist/
https://gallery.shinyapps.io/drinkr/
https://gallery.shinyapps.io/college_explorer-master/
https://shiny.rstudio.com/gallery/

Agenda

I Examine the RStudio shiny app template
I Build a basic shiny app
I Build a more advanced shiny app to explore a linear model of

the Albemarle County Homes Data

Installing shiny

shiny is an R package, so install as you would any other package:

install.packages("shiny")

At the beginning of any shiny app you will need to load shiny.

library(shiny)

RStudio provides a shiny template to help us get started building a
shiny app.

Suggested steps for building a shiny app

1. Start work in a normal R script developing code that does what
you want; identify arguments or settings that you would like to
make interactive

2. (optional) Draw on paper a rough sketch of what the app
might look like

3. Start a shiny app using RStudio template: File. . . New
File. . . Shiny Web App. . .

4. Copy in your code from step 1 and modify with shiny code to
convert to interactive app

Simple motivating example
Zoom in on scatter plot of TotalValue vs FinSqFt and adjust alpha
setting (transparency of points).

$0

$250,000

$500,000

$750,000

$1,000,000

0 1,000 2,000 3,000 4,000 5,000

FinSqFt

To
ta

lV
al

ue

The R code

ggplot(homes, aes(x = FinSqFt, y = TotalValue)) +
geom_point(alpha = 0.3) +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::dollar) +
coord_cartesian(xlim = c(0,5000),ylim = c(0,1e6))

It would be nice to interact with the alpha, xlim and ylim arguments.

Sketch of a possible app

Let’s build that shiny app!

Here’s how we get started:

1. In RStudio, go to File. . . New File. . . Shiny Web App. . .
2. In the Application Name field, enter a name for your

application. (Example: “homes_plot”) This will become the
name of the folder where your shiny app is saved.

3. Leave Application Type set to “Single File (app.R)”
4. Browse to where you want to save your shiny app. In that

location a folder will be created with the name of your
application. In that folder will be a file called “app.R”. Do not
change the name of that file!

New Shiny Web App dialog

Shiny Web App template

When you start a new shiny web app you are a provided a working
app as a template to help get your started. Feel free to run it and
see what it does by clicking the Run App button.

It’s a simple app, but it provides the core shiny components we need
to start building our own shiny app.

1. the user interface (an object called ui)
2. the server logic (an object called server; the R code of our

app)
3. the function call shinyApp(ui = ui, server = server)

Building your shiny app means modifying the user interface, server,
and comments.

Default user interface: sidebar layout

This is the layout we’ll use in the workshop. It’s very functional. See
the shiny cheat sheet for several other layouts. (RStudio:
Help. . . Cheatsheets. . .)

Inputs

I Inputs allow us to collect values from the user
I These can be numeric fields, radio buttons, pull down lists,

slider bars, check boxes, action buttons, text fields, etc
I The shiny template provides us with a slider bar, created with

the sliderInput function

I The value collected is input into our R code as input$bins

Outputs

I The user interface not only collects values from the user but
also displays R output, such as plots, tables and statistical
summaries.

I The shiny template provides us with plot output, created with
the plotOutput function

I plotOutput is called on "distPlot", which is created in the
server portion of the app using a renderPlot function.

I "distPlot" is a user-generated name; it could have been
called "histogram"

I In general, output that is presented in the user interface will be
created in the server portion using a render* function

render and Output functions work together

The server

The “server” is a function where the application’s R code is executed.
The following process roughly summarizes how a shiny app works:

1. user provides input in the user interface (eg, number of bins)
2. the input is passed to the server where the R code is processed

(eg, create histogram with specified number of bins)
3. the output is passed back to the user interface to be displayed

(eg, plot histogram)

The server template

Your R code typically goes inside a render* function that creates
output to be displayed in the user interface.

Updating the UI controls for our example

We want to create 1 slider input and 4 numeric inputs.

Updating the server for our example

We copy-and-paste our code into the renderPlot function and
update the alpha, xlim and ylim arguments. Notice I chose to save
the result as output$scatterPlot.

Add data for the app

We also need to include the R code that reads in and prepares the
homes data for plotting. Insert under library(shiny) but before
we define the UI.

Updating the UI output for our example

Two last steps:

1. in the UI section we update the plotOutput function to use
"scatterPlot", which we named our plot in the server
section.

2. Update the plot title as follows: titlePanel("TotalValue
vs FinSqFt")

Try out the app by clicking the Run App button.

The finished app

Congratulations on your first shiny app!

That’s how the development of your first few shiny apps will
proceed:

1. recognize R code that could be presented as an interactive app
2. start a new shiny web app using RStudio
3. tweak the template to work with your R code

You are developing an application. Expect it to take time and
patience.

Going beyond the RStudio template

The RStudio template is a great foundation for creating basic shiny
apps. However shiny offers much more functionality than what is
offered in the template.

Let’s look at a few:

I use tabs so we can run multiple shiny apps in a single app
I use HTML to format the look of the app and/or add text
I modularize reactions so we can store values and reduce

computation

Multiple tabs

I Using tabsetPanel and tabPanel we can create multiple
tabs, or pages, for our apps.

I Examples:
I an app on one tab and instructions on another tab
I multiple apps, each on their own tab
I an app on one tab, data browser on another tab

I Today our goal is to build a shiny app with two tabs: one to
display effect plots and another to calculate expected home
values for given specifications.

Example: Minimal tab panel

Example: Different apps on each tab

Using HTML to add text and format look

I HTML is a markup language that web browsers use to render
text

I Example: this is bold is rendered as
“This is bold”

I We can add text to our apps and format the text with HTML
I Most common tags have wrapper functions
I Example: This is strong("bold") is rendered as “This is

bold”

Example: using HTML in shiny app

Modular reactions

I Let’s say we want to sample data from a Normal distribution,
plot a histogram, and then try different bin widths.

I We could do this:

output$hist1 <- renderPlot({hist(rnorm(input$n1),
breaks = input$bins)})

I But changing the bin widths (breaks) would cause
renderPlot to execute again and generate a new sample.

I We would like to modularize the call to rnorm so it only runs
when we change the sample size and not the bin width.

Create modular reactions with the reactive function

I The reactive function creates a reactive expression
I It caches (or saves) its value and can be called by other code
I Example:

re <- reactive({n <- rnorm(input$n1)})
output$hist1 <- renderPlot({hist(re(),

breaks = input$bins)})

I The reactive expression re() runs when the sample size
changes and saves the result to n

I renderPlot uses the reactive expression to generate the
histogram

Our final shiny app

Let’s apply what we learned to build a shiny app that allows us to
explore a complex linear model based on the Albemarle County
homes data.

Click here to access the workshop exercise.

Or go to https://at.virginia.edu/2SS695y

https://at.virginia.edu/2SS695y
https://at.virginia.edu/2SS695y

Where to host Shiny apps

To put your Shiny app on the web, it needs to be hosted on a Shiny
server. Three options are available:

1. Deploy to the cloud: http://www.shinyapps.io/ Free and paid
options available

2. Deploy on-premises (open source): Shiny Server
3. Deploy on-premises (commercial): Shiny Server Pro

Options 2 and 3 require setting up your own server. There are some
articles on the web about how to do it with Amazon Web Services
(AWS).

http://www.shinyapps.io/

Resources

Written and video tutorials:
https://shiny.rstudio.com/tutorial/

Gallery of example shiny apps:
https://shiny.rstudio.com/gallery/

Building Shiny apps - an interactive tutorial
https://deanattali.com/blog/building-shiny-apps-tutorial/

https://shiny.rstudio.com/tutorial/
https://shiny.rstudio.com/gallery/
https://deanattali.com/blog/building-shiny-apps-tutorial/

Thanks for coming today!

For help and advice with your statistical analysis:
statlab@virginia.edu

Sign up for more workshops or see past workshops:
http://data.library.virginia.edu/training/

Register for the Research Data Services newsletter to stay
up-to-date on RDS events and resources:
http://data.library.virginia.edu/newsletters/

mailto:statlab@virginia.edu
http://data.library.virginia.edu/training/
http://data.library.virginia.edu/newsletters/

