
Web Scraping with rvest

Clay Ford

Spring 2017

What is web scraping?

I Writing a program or script to automate the process of visiting
multiple web pages and collecting data

I Also refers to the process of cleaning up and wrangling the
data pulled from a web site so it’s suitable for analysis

I This workshop uses R but can also be done with Python and
other languages

Things to consider before web scraping

I If your data is on a few pages and will never change, a simple
copy-and-paste might be faster

I Check if an API (Application Programming Interface) is
available. An API allows you to retrieve data in a structured
format. (Example: NY Times, Amazon, Twitter, census.gov)

I See if someone else has already written a script

HTML vs JavaScript

I This presentation shows how to scrape data from a page
created with HTML/CSS

I Many sites now generate pages using JavaScript
I Sites generated with JavaScript are harder to scrape and

require workarounds in R

HTML and CSS

I With web scraping, we’re downloading a raw HTML page,
pulling out what we want, and wrangling into a structure we
can analyze

I Many web sites use Cascading Style Sheets (CSS) to create the
“look” of a web site

I It helps to know a little about HTML and CSS when web
scraping

I To view source code of a web page, do something like
right-click and select “View Page Source”

Basic HTML

Basic web page

CSS example

Basic HTML with CSS

Basic web page with CSS

The rvest package

I rvest is an R package that allows you to “scrape” content off
a web page based on CSS selectors and HTML tags.

I rvest is a wrapper for xml2 and httr, two other R packages.
I All three packages are in active development, which means new

functions may be added, old functions deprecated/removed,
and existing functions changed.

I Versions for this workshop
I rvest: 0.3.2
I xml2: 1.1.1
I httr: 1.2.1

CSS selectors

I CSS selectors are patterns used to select the element(s) we
want to style

I In our CSS stylesheet above, we selected three elements:
I .p1 selected class="p1"
I #title selected id="title"
I strong selected

I CSS selectors can be more sophisticated. For example:
I h1 + p selects all <p> elements placed immediately after <h1>

elements
I a[href$=".pdf"] selects all <a> elements whose link ends

with .pdf

I rvest uses CSS selectors to select text to scrape

rvest Example

Extract the text with id = "title"

library(rvest)
page <- read_html("sample_CSS.html")
page %>% html_nodes(css = "#title") %>% html_text()

[1] "Welcome to the CSS web page."

Note: "sample_CSS.html" is usually a web site URL.

What just happened?

I loaded the rvest package (which also loads the xml2 package)
I used the read_html function to read the HTML page (Note:

read_html is an xml2 function)
I used the html_nodes function to find those parts with id =

"title"
I used the html_text function to extract just the text
I Notice the last three were “piped” together using the %>%

operator. This takes the output of the previous function and
inputs as the first argument to the next function.

I Use Ctrl+Shift+M (Win) or Cmd+Shift+M (Mac) to quickly
insert %>%

Another rvest example

Extract the text with class = "p1"

page %>% html_nodes(css = ".p1") %>% html_text()

[1] "Talking about stuff is fun."

Another rvest example

Extract the text tagged with

page %>% html_nodes(css = "strong") %>% html_text()

[1] "CSS"

Another rvest example

Extract the text tagged with <p>

page %>% html_nodes(css = "p") %>% html_text()

[1] "Welcome to the CSS web page."
[2] "Talking about stuff is fun."
[3] "I like you. Say more things about stuff.\r\n"

A common rvest process

1. Read in a web page with read_html
2. Pick out some portion of the page using html_nodes with a

CSS selector
3. Pass to an extractor function such as html_text or

html_table

html_text extracts text between HTML tags. html_table parses
an HTML table into a data frame.

More CSS selector examples

I Select all HTML tables: html_nodes(css = "table")
I Select all elements inside of any <p>:

html_nodes("p strong")
I Select all elements that have <ul class="fancy">:

html_nodes("ul.fancy")
I Select all elements with id="big" that also have

class="wide": html_nodes("#big.wide")

To learn more, work through tutorial at
http://flukeout.github.io/;
See also this CSS selector reference:
http://www.w3schools.com/cssref/css_selectors.asp

http://flukeout.github.io/
http://www.w3schools.com/cssref/css_selectors.asp

How to figure out which CSS selectors to use

Three common approaches:

1. View page source (right click. . . View Page Source) and figure
it out.

2. Use your browser’s “Inspector” function. Chrome and Firefox
have this.

3. Use SelectorGadget. SelectorGadget is a javascript
bookmarklet that you add to your browser toolbar.

To install SelectorGadget

1. go to https://cran.r-project.org/web/packages/
rvest/vignettes/selectorgadget.html

2. Drag the “SelectorGadget” link (under Installation) into your
bookmark toolbar

That’s it!

https://cran.r-project.org/web/packages/rvest/vignettes/selectorgadget.html
https://cran.r-project.org/web/packages/rvest/vignettes/selectorgadget.html

Basic way to use SelectorGadget

1. Click the SelectorGadget button in your bookmark bar to turn
it on.

2. Hover over element you wish to select and click. It will turn
green. SelectorGadget will reveal the CSS selector. All other
matching items will be highlighted yellow.

3. If necessary, scroll around the document to find yellow elements
that you don’t want to match and click on them.

The rvest package has a vignette for using SelectorGadget with
more details.

SelectorGadget example

Click the SelectorGadget button, click what you want to select, look
at result in SelectorGadget bar (“.p1”)

SelectorGadget example
Determining selector for all reviews on BestBuy

Scraping tables

I HTML tables are usually in <table> tags
I html_nodes("table") will find all tables on a page
I If we want a specific table, say the 3rd one, we can use the

extract function from the magrittr package to select it.
I Example: html_nodes("table") %>% extract(3)
I Once we have a table selected, we use html_table to convert

the table to a data frame

Example of a table

Example of scraping a table

library(magrittr) # for extract function
URL <- "https://en.wikipedia.org/wiki/Lists_of_earthquakes"
page <- read_html(URL)
dat <- page %>% html_nodes("table") %>%

extract(3) %>% html_table()

Or maybe like this without using extract:

tables <- read_html(URL) %>% html_nodes("table")
dat <- tables[[3]] %>% html_table()

Extracting data from attributes

I Sometimes we want to scrape data stored in attributes.
I For example, on zillow.com, items like latitude, longitude and

zillow id are stored as attribute values:

I We can use html_attr for this task.
I Use it like html_text (ie, after using html_nodes)

Scraping attribute values example

URL <- "http://www.zillow.com/homes/Charlottesville-VA_rb/"
page <- read_html(URL)
page %>% html_nodes("article") %>%

html_attr("data-latitude")

[1] "38162223" "38060730" "38034126" "38090600" "38036629" "38040197"
[7] "38049249" "38027108" "38029676" "38034483" "38033718" "38025386"
[13] "38032700" "38038456" "38072200" "38028690" "38072200" "38006256"
[19] "38063160" "38045340" "37998500" "38125687" "38159284" "38066826"
[25] "38019649" "38122987" "38030950"

Notice we need to convert to numeric and divide by 1,000,000 to
get actual latitude values.

Web scraping multiple pages

I Often the data we want is located on multiple web pages.
I Example: a web site may only show 10 results at a time for a

site search.
I Therefore we need to repeat our rvest code for each page.
I This requires some R programming to either loop or apply our

rvest code for multiple pages.

A general strategy for scraping multiple pages

1. write R code to scrape data for one page
2. convert R code to a function
3. Get URLs for all pages you want to scrape
4. “lapply” function to a vector of URLs (or use a for loop to

cycle through URLs)

We will demonstrate this approach in the R script.

Another approach is to use the follow_link() function to
programmatically follow, say, a “Next” link to the next page.

Submitting forms

rvest also allows you to submit web page forms. For example, we
might like to write an R script that allows us to submit the following
form and scrape the results:

One process for submitting forms

1. Establish a session using html_session
2. Parse the form using html_form
3. Set the form values using set_values
4. Submit the form using submit_form

Example of submitting Virgo form and scraping book titles

uvaLibrary <- "http://search.lib.virginia.edu/catalog"
page <- html_session(uvaLibrary)
f0 <- html_form(page)[[1]]
f1 <- set_values(form = f0, q = "Asimov",

catalog_select = "catalog")
results <- page %>% submit_form(form = f1)
results %>% html_nodes("dd.titleField a") %>% html_text()

Notes: This scrapes just the book titles on page 1. q and
catalog_select are form fields on Virgo.

web scraping heads-up

I Be paranoid. Assume something will go wrong. What works on
one page may not work on another page.

I Be patient. Expect to use a lot of trial and error to figure out
the best way to scrape a page.

I Continue to be patient. Expect your script to take time to run
if you’re scraping lots of pages.

I Be prepared for the web site to change without notice and
render your script useless.

I Be prepared to spend time cleaning your data once the
scraping is done.

Let’s go to R!

Reference and further reading

I Tutorial for css selectors: http://flukeout.github.io/
I CSS Selector cheat sheet:

http://www.w3schools.com/cssref/css_selectors.asp
I See the demos that come with the rvest package

http://flukeout.github.io/
http://www.w3schools.com/cssref/css_selectors.asp

Thanks for coming today!

I For help and advice with your data analysis:
statlab@virginia.edu

I Sign up for more workshops or see past workshops:
http://data.library.virginia.edu/training/

I Register for the Research Data Services newsletter to be
notified of new workshops:
http://data.library.virginia.edu/newsletters/

mailto:statlab@virginia.edu
http://data.library.virginia.edu/training/
http://data.library.virginia.edu/newsletters/

